DOI QR코드

DOI QR Code

Sodium Sulfur Battery for Energy Storage System

대용량 에너지 저장시스템을 위한 나트륨 유황전지

  • Kim, Dul-Sun (Department of Materials Engineering and Convergence Technology, Department of Chemical and Biological Engineering, Gyeongsang National University) ;
  • Kang, Sungwhan (Department of Materials Engineering and Convergence Technology, Department of Chemical and Biological Engineering, Gyeongsang National University) ;
  • Kim, Jun-Young (Department of Materials Engineering and Convergence Technology, Department of Chemical and Biological Engineering, Gyeongsang National University) ;
  • Ahn, Jou-Hyeon (Department of Materials Engineering and Convergence Technology, Department of Chemical and Biological Engineering, Gyeongsang National University) ;
  • Lee, Chang-Hui (Ultra Large Capacity Battery Research Team, Research Institute of Industrial Science & Technology) ;
  • Jung, Keeyoung (Ultra Large Capacity Battery Research Team, Research Institute of Industrial Science & Technology) ;
  • Park, Yoon-Cheol (Ultra Large Capacity Battery Research Team, Research Institute of Industrial Science & Technology) ;
  • Kim, Goun (Ultra Large Capacity Battery Research Team, Research Institute of Industrial Science & Technology) ;
  • Cho, Namung (Ultra Large Capacity Battery Research Team, Research Institute of Industrial Science & Technology)
  • 김둘선 (경상대학교 나노신소재융합공학과, 생명화학공학과) ;
  • 강성환 (경상대학교 나노신소재융합공학과, 생명화학공학과) ;
  • 김준영 (경상대학교 나노신소재융합공학과, 생명화학공학과) ;
  • 안주현 (경상대학교 나노신소재융합공학과, 생명화학공학과) ;
  • 이창희 (포항산업과학연구원) ;
  • 정기영 (포항산업과학연구원) ;
  • 박윤철 (포항산업과학연구원) ;
  • 김고운 (포항산업과학연구원) ;
  • 조남웅 (포항산업과학연구원)
  • Received : 2013.07.18
  • Accepted : 2013.08.16
  • Published : 2013.08.31

Abstract

Sodium sulfur (NAS) battery is a high energy storage system (ESS). These days, as the use of renewable green energy like wind energy, solar energy and ocean energy is rapidly increasing, the demand of ESS is increasing and NAS battery is considered to be one of the most promising ESS. Since NAS battery has a high energy density(3 times of lead acid battery), long cycle life and no self-charge and discharge, it is a good candidate for ESS. A NAS battery consists of sulfur as the positive electrode, sodium as the negative electrode and ${\beta}$"-alumina as the electrolyte and a separator simultaneously. Since sulfur is an insulator, carbon felt should be used as conductor with sulfur and so the composition and property of the cathode could largely influence the cell performance and life cycle. Therefore, in this paper, the composition of NAS battery, the property of carbon felt and sodium polysulfides ($Na_2S_x$, intermediates of discharge), and the effects of these factors on cycle performance of cells are described in detail.

나트륨 유황전지(NAS)는 대용량 에너지 저장시스템(energy storage system, ESS) 중 하나로서, 최근 풍력에너지, 태양에너지, 해양에너지 등 그린재생에너지의 사용증가로 ESS에 대한 수요가 급증함에 따라 NAS 전지에 대한 관심이 고조되고 있다. NAS 전지는 에너지 밀도가 높고(납 축전지밀도의 3배), 사이클 수명이 길고, 자가방전이 없어 대용량 전력저장 시스템에 적합하다. NAS 전지는 양극으로 황(Sulfur), 음극으로 나트륨(Na), 고체전해질 및 분리막으로 ${\beta}$"-알루미나($Al_2O_3$)로 구성되어 있고, 양극 활물질인 황은 부도체이기 때문에 도전재인 탄소섬유(carbon felt)에 함침시켜 양극으로 사용해야 함으로, 양극재 구성 및 특성은 전지성능에 상당한 영향을 미치게 된다. 따라서 본 논문에서는 NAS 전지의 구성, 다황화나트륨($Na_2S_x$, 방전생성물) 및 양극재의 특성, 전지 성능에 미치는 영향인자들에 대해서 알아보고자 한다.

Keywords

References

  1. A. Bito, 'Over of the sodium-sulfur battery for the IEEE stationary battery committee' Power Engineering Society General Meeting, IEEE, 2, 1232 (2005).
  2. Y. Hida, R. Yokoyma, K. Iba, and K. Tanaka, 'Practical load following operation of NAS battery' 8th WSEAS International Conference on Power Systems (PS 2008), Santander, Cantabria, Spain, September 23-25, 101 (2008).
  3. K. B. Song, S. K. Ha, J. W. Park, D. J. Kweon, and K H. Kim, 'Hydrid load forecasting method with analysis of temperature sensitivities' IEEE Transactions on Power System, 21, 869 (2006). https://doi.org/10.1109/TPWRS.2006.873099
  4. M. Kamibayashi, and K. Tanaka, 'Recent sodium sulfur battery application' Transmission and Distribution Conference and Exposition, IEEE/PES, 1169 (2001).
  5. K. Iba, R. Ideta and K. 'Analysis and operational records of NAS battery' Suzuki, Universities Power Engineering Conference, UPEC'06, Proceeding of the 41st International, 491(2006).
  6. E. Kodama and Y. Kurashima, 'Development of a compact sodium-sulphur battery' Power Engineering Journal, 13, 136 (1999). https://doi.org/10.1049/pe:19990306
  7. P. Braford and P. E. Roberts, 'Sodium-sulfur(NaS) batteries for utility energy storage application' Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Centry, IEEE 1 (2008).
  8. Z. Wen, J. Cao, Z. Gu, X. Xu, F. Zhang, and Z. Lin, 'Research on sodium sulfur battery for energy storage' Solid State Ionics, 179, 1697 (2008). https://doi.org/10.1016/j.ssi.2008.01.070
  9. T. Oshima and M. Kajita, 'Development of sodium-sulfur battery' Int. J. Appl. Ceram. Technol., 1, 269 (2004).
  10. J. L. Sudworth and A.R. Tilley, 'Sodium sulfur battery' Chapman & Hall, New York (1985).
  11. J. Sangster and A. D. Pelton, 'The Na-S(sodium-sulfur) system' Journal of phase equilibria, 18, 1 (1997).
  12. D. G. OEI, 'The sodium-sulfur system. I. Differential thermal analysis' Inorganic Chemistry, 12, 435 (1973). https://doi.org/10.1021/ic50120a038
  13. G. J. Janz, J. R. Downey, Jr., E. Roduner, G. J. Wasilczyk, J. W. Coutts, and A. Eluard, 'Raman Studies of Sulfur- Containing Anions in Inorganic Polysulfides. Sodium Polysulfides' Inorganic Chemistry, 15, 1759 (1976). https://doi.org/10.1021/ic50162a004
  14. G. Brauer, 'Handbuch der praparativen anorganischem Chemie', Ferdinand Enke Verlag, Stuttgart, (1960)
  15. B. Cleaver, A. J. Davies, and M. D. Hames, 'Properties of fused polysulphides- I. The electrical conductivity of fused sodium and potassium polysulphides' Electrochim, Acta, 18, 719 (1973). https://doi.org/10.1016/0013-4686(73)80062-3
  16. T. G. Pearson and P. L. Robinson, 'The polysulphides of the alkalis. Part I. Sodium(i)' J. Chem. Soc., 1473 (1930). https://doi.org/10.1039/jr9300001473
  17. F. Feher and H. J. Berthold, 'Beitrage zur Chemie des Schwefels. XIV. Uber das System Natrium-Schwefel' Z. Anorg. Chem., 273, 144 (1953). https://doi.org/10.1002/zaac.19532730305
  18. G. Brauer, 'Handbook of Preparative Inorganic Chemistry', 2nd ed., Academic Press, NY, (1965).
  19. N. K. Gupta and R. P. Tischer, 'Thermodynamic and physical properties of molten sodium polysulfides from open-circuit voltage measurements' J. Electrochem. Soc., 119, 1033 (1972). https://doi.org/10.1149/1.2404389
  20. G. Weddigen, H. Kleinschmager, and S. Hoppe, 'Synthesis of sodium polysulfides' J. Chem. Res. (S), 3, 96 (1978).
  21. A. Wicker, G. Desplanches, and H. Saisse, 'Behaviour of chromium-coated steels in sodium polysulphide environments' Thin Solid Films, 83, 437 (1981). https://doi.org/10.1016/0040-6090(81)90651-9
  22. M. P. J. Brennan, 'Power Sources 5' Ed. D. H. Collins, Academic Press, NY, 693(1977).
  23. A. P. Brown and J. E. Battles, 'The Direct Synthesis of Sodium Polysulfides from Sodium and Sulfur' Synth. React. Inorg. Met. -Org. Chem., 14, 945 (1984). https://doi.org/10.1080/00945718408058275
  24. J. Sangster and A. D. Pelton, 'The Na-S (Sodium-Sulfur) System' Journal of Phase Equilibria, 18, 89 (1997). https://doi.org/10.1007/BF02646762
  25. O. E. Jaroudi, E. Picquenard, A. Demortier, J. P. Lelieur, and J. Corset, 'Polysulfide Anions II: Structure and Vibrational Spectra of the S4 2− and S5 2− Anions. Influence of the Cations on Bond Length, Valence, and Torsion Angle' Inorg. Chem., 39, 2593 (2000). https://doi.org/10.1021/ic991419x
  26. O. E. Jaroudi, E. Picquenard, N. Gobeltz, A. Demortier, and J. Corset, 'Raman Spectroscopy Study of the Reaction between Sodium Sulfide or Disulfide and Sulfur: Identity of the Species Formed in Solid and Liquid Phases' Inorg. Chem., 38, 2917 (1999). https://doi.org/10.1021/ic9900096
  27. D. G. Oei, 'The Sodium-Sulfur System. II. Polysulfides of Sodium', Inorganic Chemistry, 12, 438 (1973). https://doi.org/10.1021/ic50120a039
  28. Z. H. Wang, 'The influene of carbon felt on the performance of sodium-sulfur cells' Solid State Ionics, 3, 425 (1981).
  29. M. P. J. Brennan, 'The influence of carbon matrix characteristics on the performance of sulfur electrodes for sodium-sulfur cells' J. Electrochem. Soc.; Electrochemical Science and Technology, 125, 705 (1978). https://doi.org/10.1149/1.2131531
  30. R. P. Tischer, 'The Sulfur Electrode - Fused Salts and Solid Electrolytes' Academic Press (1983).
  31. Toho Tenax Co. Ltd., Japan Patent, 4407854 (2009).
  32. NGK Insulators Ltd. and Tokyo Electric Power Co. Inc., Japan Patent, 3363124 (2002).
  33. Tokyo Electric Power Co. Inc. and NGK Insulators Ltd., Japan Patent, 2832155 (1998).
  34. NGK Insulators Ltd. and Tokyo Electric Power Co. Inc., Japan Patent, 3195685 (2001).
  35. NGK Insulators Ltd. and Tokyo Electric Power Co. Inc., Japan Patent, 3416607 (2003).
  36. K. Kinoshita and S. C. Leach, 'Mass-transfer study of carbon felt, flow-through electrode' J. Electrochem. Soc., Electrochemical Science and Technology, 129, 1993 (1982). https://doi.org/10.1149/1.2124338
  37. J. G. Garcia, P. Bonete, E. Exposito, V. Montiel, A. Aldaz, and R. T. Macia, 'Characterization of a carbon felt electrode: structural and physical properites' J. Mater. Chem., 9, 419 (1999). https://doi.org/10.1039/a805823g
  38. J. Fally, C. Lasne, Y. Lazennec, and P. Margotin, 'Some aspects of sodium-sulfur cell operation' J. Electochem. Soc., 120, 1292 (1973). https://doi.org/10.1149/1.2403249
  39. A. L. Mehaute and P. Bordet, U.S. Patent, 4,037,028 (1977).
  40. M. Hidaka, K. Furuta, M. Shimizu, A. Okuno, and H. Rachi, 'Current collector of positive electrode and sodium-sulfur battery using the same' U.S. Patent, 6,902,842 B2 (2005).
  41. NGK Insulators Ltd. and Tokyo Electric Power Co. Inc., Japan Patent, 4076331 (2008).
  42. R. J. Bones and T. L. Markin, 'Polaization and corrosion in sodium/sulfur cells' J. Electrochem. Soc., 125, 1587 (1978). https://doi.org/10.1149/1.2131248
  43. A. Kunimoto, M. Shimizu, I. Morotomi, and E. Nomura, Proceedings of 6th International Conference on Batteries for Utility Energy Storage, Gelsenkirchen and Herne, Germany, 21-23 September 1999, Workshop T3-A.
  44. R. Okuyama, H. Nakashima, T. Sano, and E. Nomura, 'The effect of metal sulfides in the cathode on Na/S battery performance' J. Power Sources, 93, 50 (2001). https://doi.org/10.1016/S0378-7753(00)00532-2
  45. T. Ando, K. Togoe, and Y. Harada, 'Sulfide corrosion resistance and adhesive strength of a high Cr-Fe alloy plasma spray coating applied to the inner surface of cylindrical aluminum containers of NAS batteries to store electrical power for extended period of time' J. Japan Inst. Metals, 72, 581 (2008). https://doi.org/10.2320/jinstmet.72.581

Cited by

  1. High and intermediate temperature sodium–sulfur batteries for energy storage: development, challenges and perspectives vol.9, pp.10, 2019, https://doi.org/10.1039/C8RA08658C