• Title/Summary/Keyword: Storage battery

Search Result 891, Processing Time 0.03 seconds

Economic and Environmental Assessment of a Renewable Stand-Alone Energy Supply System Using Multi-objective Optimization (다목적 최적화 기법을 이용한 신재생에너지 기반 자립 에너지공급 시스템 설계 및 평가)

  • Lee, Dohyun;Han, Seulki;Kim, Jiyong
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.332-340
    • /
    • 2017
  • This study aims to propose a new optimization-based approach for design and analysis of the stand-alone hybrid energy supply system using renewable energy sources (RES). In the energy supply system, we include multiple energy production technologies such as Photovoltaics (PV), Wind turbine, and fossil-fuel-based AC generator along with different types of energy storage and conversion technologies such as battery and inverter. We then select six different regions of Korea to represent various characteristics of different RES potentials and demand profiles. We finally designed and analyzed the optimal RES stand-alone energy supply system in the selected regions using multiobjective optimization (MOOP) technique, which includes two objective functions: the minimum cost and the minimum $CO_2$ emission. In addition, we discussed the feasibility and expecting benefits of the systems by comparing to conventional systems of Korea. As a result, the region of the highest RES potential showed the possibility to remarkably reduce $CO_2$ emissions compared to the conventional system. Besides, the levelized cost of electricity (LCOE) of the RES-based energy system is identified to be slightly higher than conventional energy system: 0.35 and 0.46 $/kWh, respectively. However, the total life-cycle emission of $CO_2$ ($LCE_{CO2}$) can be reduced up to 470 g$CO_2$/kWh from 490 g$CO_2$/kWh of the conventional systems.

Synthesis of Mg2Ni by mechanical alloying and its electrochemical characteristics for Ni-MH secondary battery (Ni-MH 2차 전지용 Mg2Ni의 기계적 합금화법에 의한 제조 및 전기화학적 특성)

  • Moon, Hong-Gi;Choi, Seung-Jun;Kim, Dae-Hwan;Park, Choong-Nyeon
    • Journal of Hydrogen and New Energy
    • /
    • v.10 no.4
    • /
    • pp.225-232
    • /
    • 1999
  • The $Mg_2Ni$ hydrogen storage alloys which have much higher theoretical discharge capacity than $AB_5$ and $AB_2$ type alloys were synthesized by mechanical alloying with some additives and subjected to the electrochemical measurements. Two different processes were employed to the synthesis of $Mg_2Ni$ alloys with using the high energy ball mill SPEX 8000. One was only ball milling, 12 hrs, the Mg and Ni powders for 12 hrs with additives such as $AB_5$, Ni, Co and Cu powders. In the other process the Mg and Ni powders were ball milled for 1 hr first and then heat treated at $300{\sim}400^{\circ}C$ for 1 hr to get $Mg_2Ni$ alloy, and finally the $Mg_2Ni$ alloy powders were ball milled with the additives for 12 hrs. The alloy powders prepared were compacted at room temperature under $7.64tons/cm^2$ into disk type electrodes for the electrochemical measurements. The experimntal results showed that the electrodes prepared with the heat treated alloy powders had a higher discharge capacities than those without heat treatment. The addition of Ni caused an increase of the discharge capacity and the addition of Co improved the cycling characteristics. The electrode prepared by ball milling of $Mg_2Ni$ and 10wt% Ni powders has showed the highest discharge capacity, 546mAh/g.alloy, which was 55% of the theoretical capacity.

  • PDF

THE DEVELOPMENT OF INDWELLING WIRELESS PH TELEMETRY OF INTRAORAL ACIDITY (구강 내 산도의 생체 내 측정을 위한 wireless pH telemetry의 개발)

  • Kim, Hyung-Jun;Kim, Jae-Moon;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2008
  • The purpose of this study was to develop the wireless pH telemetry lasting longer than 24 hours in the mouth to overcome the limits of conventional wire telemetry previously used for salivary and plaque pH measurement, and to assess its effectiveness. We developed a wireless pH telemeter which can measure and store the pH profile data during more than 24 hours. It was composed of intraoral part; pH sensor of antimony electrode, battery and microprocessor for data storage, and extraoral part; control/data receiver and data analyzing software which was newly made for this device. After inspecting wireless electrode for accurate measurement, it was attached to the removable intraoral appliance and delivered to the volunteer who was told to wear except brushing time, retrieved after 24 hours and finally the pH profile data was extracted and analyzed. When compared with conventional wire telemetry, this device showed similar results and induced less discomfort to examinees. The data showed pH changes at same time when examinees ate various scheduled foods and beverages. With this method it became possible to accurately measure pH changes within mouth for long time in accordance with individual's lifestyle, definitely reducing the discomfort inflicted to the examinees' life.

  • PDF

A Study on the Effect of Different Functional Groups in Anion Exchange Membranes for Vanadium Redox Flow Batteries (바나듐 산화환원 흐름전지를 위한 음이온교환막의 관능기에 따른 특성 연구)

  • Lee, Jae-Myeong;Lee, Mi-Soon;Nahm, Ki-Seok;Jeon, Jae-Deok;Yoon, Young-Gi;Choi, Young-Woo
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.415-424
    • /
    • 2017
  • Commonly cation exchange membranes have been used for vanadium redox flow batteries. However, a severe vanadium ion cross-over causes low energy efficiency. Thus in this study, we prepared 3 different anion exchange membranes to investigate the effect on the membrane properties such as vanadium ion cross-over and long term stability. The base membranes were prepared by an electrolyte pore filling technique using vinyl benzyl chloride (VBC), divinylbenzene (DVB) within a porous polyethylene (PE) substrate. Then 3 different functional amines were introduced into the base membranes, respectively. These resulting membranes were evaluated by physico-chemical properties such as ion exchange capacity, dimensional stability, vanadium ion cross-over and membrane area resistance. Conclusively, TEA-functionalized membrane showed longest term stability than other membranes although all the membranes are similar to coulombic efficiency.

Thermo-Chemical Analysis of a Calcination Furnace to Produce Cathode Material for the Secondary Batteries (이차전지 양극활물질 제조용 소성로의 열화학적 해석)

  • Hwang, Min-Young;Kim, Yong-Gyun;Jeon, Chung-Hwan;Song, Ju-Hun;Kim, Yong-Tae;Chang, Youn-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.155-161
    • /
    • 2009
  • Lithium secondary batteries have been widely used in the portable electric devices as power source. Recently it is expected that the realm of its applications expands to the markets such as energy storage medium of hybrid electric vehicle(HEV), electric vehicle(EV). Cathode active material is crucial in terms of performance, durability, capacity of lithium secondary batteries. It is urgent to develope the technology for mass production of cathode material to cope with the markets' demands in the near future. In this study, a calcination furnace running in real production line is modelled in 3D, and the thermal flow and gas flow after chemical reaction in the furnace is analyzed through numerical computations. Based on the results, it is shown that large volume of $CO_2$ gas is generated from chemical reaction. High concentration of $CO_2$ gas and it's stagnation is clearly found from the reactant containers in which the reaction occur to the bottom area of the furnace. It is also studied that 15% or more $CO_2$ mol fraction could affect to proper formation of $LiCoO_2$ through TGA-DSC analysis. The solutions to evacuate carbon dioxide from the furnace are suggested through the change of furnace design and operating condition as well.

Effect of Lithium Ion Concentration on Electrochemical Properties of BF3LiMA-based Self-doping Gel Polymer Electrolytes (BF3LiMA기반 자기-도핑형 겔 고분자 전해질의 전기화학적 특성에 미치는 리튬이온 농도의 영향)

  • Kang, Wan-Chul;Ryu, Sang-Woog
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.211-216
    • /
    • 2010
  • Boron trifluoride lithium methacrylate ($BF_3$LiMA)-based gel polymer electrolytes (GPEs) were synthesized with various $BF_3$LiMA concentration to elucidate the effect on ionic conductivity and electrochemical stability by a AC impedance and linear sweep voltammetry (LSV). As a result, the highest ionic conductivity reached $5.3{\times}10^{-4}Scm^{-1}$ at $25^{\circ}C$ was obtained for 4 wt% of $BF_3$LiMA. Furthermore, high electrochemical stability up to 4.3 V of the $BF_3$LiMA-based GPE was observed in LSV measurement since the counter anion was immobilized in this self-doped system. On the other hand, it was assumed that there was a rapid decomposition of electrolytes on a lithium metal electrode which results in a high solid electrolyte interface (SEI) resistance. However, a high stability toward graphite or lithium cobalt oxide (LCO) electrode thereby a low SEI resistance was observed from the AC impedance measurement as a function of storage time at $25^{\circ}C$. Consequently, the high ionic conductivity, good electrochemical stability and the good interfacial compatibility with graphite and LCO were achieved in $BF_3$LiMA-based GPE.

Bio-sensing Data Synchronization for Peer-to-Peer Smart Watch Systems (피어-투-피어 스마트워치 시스템을 위한 바이오 센싱 데이터 동기화)

  • LEE, Tae-Gyu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.813-818
    • /
    • 2020
  • Recently, with the rapid increase in technology and users of smart devices, the smart watch market has grown, and its utility and usability are continuously expanding. The strengths of smartwatches are wearable portability, application immediacy, data diversity and real-time capability. Despite these strengths, smartwatches have limitations such as battery limitations, display and user interface size limitations, and memory limitations. In addition, there is a need to supplement developers and standard devices, operating system standard models, and killer application modules. In particular, monitoring and application of user's biometric information is becoming a major service for smart watches. The biometric information of such a smart watch generates a large amount of data in real time. In order to advance the biometric information service, stable peer-to-peer transmission of sensing data to a remote smartphone or local server storage must be performed. We propose a synchronization method to ensure wireless remote peer-to-peer transmission stability in a smart watch system. We design a wireless peer-to-peer transmission process based on this synchronization method, analyze asynchronous transmission process and proposed synchronous transmission process, and propose a transmission efficiency method according to an increase in transmission amount.

Functional Verification of Pin-puller-type Holding and Release Mechanism Based on Nylon Wire Cutting Release Method for CubeSat Applications (나일론선 절단 방식에 기반한 Pin-puller형 큐브위성용 태양전지판 구속분리장치의 기능검증)

  • Go, Ji-Seong;Son, Min-Young;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.81-88
    • /
    • 2021
  • In general, a non-explosive nylon wire cutting-based holding and release mechanism has been used to store and deploy deployable solar panels of CubeSat. However, with this method, accessing the solar panel's access port for charging the cube satellite's battery and electrical inspection and testing of the PCB and payloads while the solar panel is in storage is difficult. Additionally, the mechanism must have a reliable release function in an in-orbit environment, and reusability for stow and deploy of the solar panel, which is a hassle for the operator and difficult to maintain a consistent nylon wire fastening process. In this study, we proposed a pin-puller-based solar panel holding and release mechanism that can easily deploy a solar panel without cutting nylon wires by separating constraining pins. The proposed mechanism's release function and performance were verified through a solar panel deployment test and a maximum separation load measurement test. Through this, we also verified the design feasibility and effectiveness of the pin-puller-based separation device.

Economical Analysis of the PV-linked Residential ESS using HOMER in Korea (HOMER를 이용한 PV 연계 가정용 ESS의 경제성 분석)

  • Eum, Ji-Young;Kim, Yong-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.36-42
    • /
    • 2019
  • Europe and North America are paying attention to residential ESS(Energy Storage System) that can manage energy efficiently. The ESS is a system that stores and manages the electric power by charging and discharging the battery. The ESS is generally used in conjunction with photovoltaic systems. The ESS supplies the load of the power generation time and stores the remaining PV power to supply the load at the non-power generation time. However, due to the high price of residential ESS, low electric rates and increasing block rates, there is no market of residential ESS in Korea. This paper reviews the price condition and the capacity for applying PV and residential ESS to household of apartments using HOMER in Korea.

Recent Progress and Perspectives of Solid Electrolytes for Lithium Rechargeable Batteries (리튬이차전지용 고체 전해질의 최근 진전과 전망)

  • Kim, Jumi;Oh, Jimin;Kim, Ju Young;Lee, Young-Gi;Kim, Kwang Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.87-103
    • /
    • 2019
  • Nonaqueous organic electrolyte solution in commercially available lithium-ion batteries, due to its flammability, corrosiveness, high volatility, and thermal instability, is demanding to be substituted by safer solid electrolyte with higher cycle stability, which will be utilized effectively in large-scale power sources such as electric vehicles and energy storage system. Of various types of solid electrolytes, composite solid electrolytes with polymer matrix and active inorganic fillers are now most promising in achieving higher ionic conductivity and excellent interface contact. In this review, some kinds and brief history of solid electrolyte are at first introduced and consequent explanations of polymer solid electrolytes and inorganic solid electrolytes (including active and inactive fillers) are comprehensively carried out. Composite solid electrolytes including these polymer and inorganic materials are also described with their electrochemical properties in terms of filler shapes, such as particle (0D), fiber (1D), plane (2D), and solid body (3D). In particular, in all-solid-state lithium batteries using lithium metal anode, the interface characteristics are discussed in terms of cathode-electrolyte interface, anode-electrolyte interface, and interparticle interface. Finally, current requisites and future perspectives for the composite solid electrolytes are suggested by help of some decent reviews recently reported.