DOI QR코드

DOI QR Code

Effect of Lithium Ion Concentration on Electrochemical Properties of BF3LiMA-based Self-doping Gel Polymer Electrolytes

BF3LiMA기반 자기-도핑형 겔 고분자 전해질의 전기화학적 특성에 미치는 리튬이온 농도의 영향

  • Kang, Wan-Chul (Department of Engineering Chemistry, Chungbuk National University) ;
  • Ryu, Sang-Woog (Department of Engineering Chemistry, Chungbuk National University)
  • Received : 2010.07.27
  • Accepted : 2010.08.09
  • Published : 2010.08.28

Abstract

Boron trifluoride lithium methacrylate ($BF_3$LiMA)-based gel polymer electrolytes (GPEs) were synthesized with various $BF_3$LiMA concentration to elucidate the effect on ionic conductivity and electrochemical stability by a AC impedance and linear sweep voltammetry (LSV). As a result, the highest ionic conductivity reached $5.3{\times}10^{-4}Scm^{-1}$ at $25^{\circ}C$ was obtained for 4 wt% of $BF_3$LiMA. Furthermore, high electrochemical stability up to 4.3 V of the $BF_3$LiMA-based GPE was observed in LSV measurement since the counter anion was immobilized in this self-doped system. On the other hand, it was assumed that there was a rapid decomposition of electrolytes on a lithium metal electrode which results in a high solid electrolyte interface (SEI) resistance. However, a high stability toward graphite or lithium cobalt oxide (LCO) electrode thereby a low SEI resistance was observed from the AC impedance measurement as a function of storage time at $25^{\circ}C$. Consequently, the high ionic conductivity, good electrochemical stability and the good interfacial compatibility with graphite and LCO were achieved in $BF_3$LiMA-based GPE.

전해액 상용성의 boron trifluoride lithium methacrylate ($BF_3$LiMA)를 기본으로 하는 겔 고분자 전해질 (gel polymer electrolytes, GPE)에서 $BF_3$LiMA의 농도가 이온전도도, 전기화학적 안정성에 미치는 영향을 AC impedance 측정법과 linear sweep voltammetry (LSV)를 통하여 평가하였다. 그 결과 $BF_3$LiMA가 4wt% (고분자함량 21 wt%)일 때, 상온 이온전도도가 $5.3{\times}10^{-4}Scm^{-1}$로서 가장 높게 관찰되었으며 4 wt% 전후로 다시 감소하였다. $BF_3$LiMA 기반의 GPE는 음이온이 고정되어 있는 자기-도핑형 계열로서 우수한 전기화학적 안정성을 확인하였다. 한편 $BF_3$LiMA 기반 GPE는 리튬금속과 비교적 불안정한 계면반응성을 보여주었지만 흑연/GPE/흑연, LCO/GPE/LCO에서는 높은 계면안정성을 형성하였다. 따라서 $BF_3$LiMA 기반의 GPE를 통하여 높은 상온 이온전도도와 전기화학적 안정성 및 흑연과 LCO 양극산화물에 대한 우수한 계면특성을 확보할 수 있었다.

Keywords

References

  1. D. Sadoway, B. Hyang, P. Trapa, P. Soo, P. Bannerjee, and A. Mayes, ‘Self-doped block copolymer electrolytes for solid-state rechargeable lithium batteries’ J. Power Sources, 97-98, 621 (2001). https://doi.org/10.1016/S0378-7753(01)00642-5
  2. H. Xie, J. Guan, and J. Guo, ‘Synthesis and properties of ionic conducting crosslinked polymer and copolymer based on dimethacryloyl poly(ethylene glycol)’ European Polymer Journal, 37, 1997 (2001). https://doi.org/10.1016/S0014-3057(01)00086-6
  3. Y. Lee and J. Park, ‘Electrochemical characteristics of polymer electrolytes based on P(VdF-co-HFP)/PMMA ionomer blend for PLIB’ J. Power Sources, 97-98, 616 (2001). https://doi.org/10.1016/S0378-7753(01)00575-4
  4. S. Zhang, L. Yang, and Q. Liu, ‘Single-ion conductivity and carrier generation of polyelectrolytes’ Solid State Ionics, 76, 121 (1995). https://doi.org/10.1016/0167-2738(94)00224-G
  5. J. Cowie and G. Spence, ‘Novel single ion, comb-branched polymer electrolytes’ Solid State Ionics, 123, 233 (1999). https://doi.org/10.1016/S0167-2738(99)00080-6
  6. X. Sun and C. Angell, ‘New single ion conductors (“polyBOP” and analogs) for rechargeable lithium batteries’ Solid State Ionics, 175, 743 (2004). https://doi.org/10.1016/j.ssi.2003.11.045
  7. H. Allcock, D. Welna, and A. Maher, ‘Single ion conductors-polyphosphazenes with sulfonimide functional groups’ Solid State Ionics, 177, 741 (2006). https://doi.org/10.1016/j.ssi.2006.01.039
  8. N. Byrne, D. MacFarlane, and M. Forsyth, ‘Composition effects on ion transport in a polyelectrolyte gel with the addition of ion dissociators’ Electrochimica Acta, 50, 3917 (2005). https://doi.org/10.1016/j.electacta.2005.02.068
  9. X. Sun, J. Hou, and J. Kerr, ‘Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate’ Electrochimica Acta, 50, 1139 (2005). https://doi.org/10.1016/j.electacta.2004.08.011
  10. M. Watanabe, H. Tokuda, and S. Muto, ‘Anionic effect on ion transport properties in network polyether electrolytes’ Electrochimica Acta, 46, 1487 (2001). https://doi.org/10.1016/S0013-4686(00)00743-X
  11. Z. Florjanczyk, W. Bzducha, N. Langwald, J.R. Dygas, F. Krok, and B. Misztal-Faraj, ‘Lithium gel polyelectrolytes based on crosslinked maleic anhydride-styrene copolymer’ Electrochimica Acta, 44, 3563 (2000).
  12. S. Ryu, P. Trapa, S. Olugebefola, J. Gonzalez-Leon, D. Sadoway, and A. Mayes, 'Effect of counter ion placement on condutcitity in single-ion conducting block copolymer electrolytes' J. Electrochem. Soc., 152(1), A158 (2005). https://doi.org/10.1149/1.1828244
  13. M. Watanabe, Y. Suzuki, and A. Nishimoto, ‘Single ion conduction in polyether electrolytes alloyed with lithium salt of a perfluorinated polyimide’ Electrochimica Acta, 45, 1187 (2000). https://doi.org/10.1016/S0013-4686(99)00380-1
  14. N. Choi, Y. Lee, B. Lee, J. Lee, and J. Park, ‘Nanocomposite single ion conductor based on organic-inorganic hybrid’ Solid State Ionics, 167, 293 (2004). https://doi.org/10.1016/j.ssi.2003.06.002
  15. W. Kang, H. Park, K. Kim, and S. Ryu, ‘Synthesis and electrochemical properties of lithium methacrylate-based self-doped gel polymer electrolytes’ Electrochimica Acta, 54, 4540 (2009). https://doi.org/10.1016/j.electacta.2009.03.050
  16. D. Kim, Y. Kim, J. Park, and S. Moon, ‘Electrical properties of the plasticized plymer electrolytes based on acrylonitrilemethyl methacrylate copolymers’ Solid State Ionics, 106, 329 (1998). https://doi.org/10.1016/S0167-2738(97)00498-0
  17. D. Vieira, C. Avellaneda, and A. Pawlicka, ‘Conductivity study of a gelatin-based polymer electrolyte’ Electrochimica Acta, 53, 1404 (2007). https://doi.org/10.1016/j.electacta.2007.04.034
  18. J. MacCallum, and C. Vincent, ‘Polymer Electrolyte Reviews-1’ 69, Elsevier Applied Science, New York (1987).