• Title/Summary/Keyword: Stokes equation

Search Result 860, Processing Time 0.023 seconds

A Flow Analysis of Vectored Thrust Nozzle Using Incompressible Navier-Stokes Solver (비압축성 Navier-Stokes 방정식을 이용한 추력 편향 노즐 해석(원통에서 사각형으로 변환하는 내부 흐름을 중심으로))

  • Shin Dae-Yong;Yoon Yong-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.66-72
    • /
    • 1997
  • Circular-to-rectangular transition ducts are used as exhaust components of high performance fighter aircraft with vectored thrust nozzles. Three-dimensional incompressible Navier-Stokes solver is used to analyze the transition duct. Cross sections of transition duct are defined by superelliptic equation. The grid system is generated by Non-Uniform Rational B-Spline, after generating surface grid by blending the cross sections. Good agreement between the results of the computational simulation and the experimental data is observed.

  • PDF

Oil Spill Simulation by Coupling Three-dimensional Hydrodynamic Model and Oil Spill Model (3차원 동수역학모형-유류확산모형 연계를 통한 유출유 거동 모의)

  • Jung, Tae-Hwa;Son, Sangyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.474-484
    • /
    • 2018
  • In this study, a new numerical modeling system was proposed to predict oil spills, which increasingly occur at sea as a result of abnormal weather conditions such as global warming. The hydrodynamic conditions such as the flow velocity needed to calculate oil dispersion were estimated using a three dimensional hydrodynamic model based on the Navier-Stokes equation, which considered all of the physical variations in the vertical direction. This improved the accuracy compared to those estimated by the conventional shallow water equation. The advection-diffusion model for the spilled oil was combined with the hydrodynamic model to predict the movement and fate of the oil. The effects of absorption, weathering, and wind were also considered in the calculation process. The combined model developed in this study was then applied to various test cases to identify the characteristics of oil dispersion over time. It is expected that the developed model will help to establish initial response and disaster prevention plans in the event of a nearshore oil spill.

Static Analysis of Gas Bearing with Ultra Low Clearance by the Direct Numerical Solution Method (극소 공기막을 갖는 공기베어링의 직접수치해법을 이용한 정적해석)

  • Park, Sang-Sin;Chang, In-Bae;Hwang, Pyung;Han, Dong-Chul
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.120-126
    • /
    • 1991
  • An expanded scheme of a direct numerical solution method for solving the Navier-Stokes equation considering the modified boundary conditions for gas lubrication with ultra low clearance at high .LAMBDA. region is presented. Many examples are calculated by this scheme and their results are compared to the previous solutions using P$^{2}$H$^{[-992]}$ . This scheme has the advantages of fast calculation time and stable convergence in high .LAMBDA. region, and gives very good results in the case of fluid film thickness discontinuity.

Analysis of Wave Forces Acting on Vertical Cylinder and Wave Transformations by S-Dimensional VOF Method (3차원 VOF법에 의한 주상구조물에 작용하는 파력과 파랑변형 해석)

  • Lee, Sang-Ki;Kim, Chang-Hoon;Kim, Do-Sam;Sin, Dong-Hoon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.377-381
    • /
    • 2006
  • Recently, as economy grow and population increase we need to develop our coastal area and make good use of it for various purposes. That's why large structures are being installed on the sea. Some samples are petroleum storage tanks, pier of sea bridges. These are large structures which have been installed at coastal area. When we design such vertical cylinder, we should avoid too much construction expense caused by excessive designing or by lack of sufficient design. In order to prevent excessive expenditure, it is important to correctly calculate the force of waves acting on structures and predict the wave transformation. In this study, apply to VOF method based on Navier-Stokes equation and then discussed that nonlinear wave force and wave transformation. A comparison between the numerical model and existing experimental results showed nice agreement among them.

  • PDF

Sub- Breaking Analysis of Free Surface Flows by the Numerical Simulation (수치 시뮬레이션을 통한 자유표면 유동의 Sub-Breaking 해석)

  • Kwag, Seung-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.28 no.8
    • /
    • pp.753-757
    • /
    • 2004
  • The free-surface flow is simulated to make clear the viscous interaction of stem waves and the sub-breaking phenomena around a high speed vehicle. The Navier-Stokes equation is solved by a finite difference method where the body-fitted coordinate system, the wall function and the triple-grid system are invoked They are applied to study precisely on the stem flow of S-103 as to which extensive experimental data are available. Computations are extended to the submerged revolutional body. The numerical result shows that the gradient of M/Us is greatly influenced by the submerged depth And the stem wave is influenced by the separation due to the bow wave.

열방정식 입장에서 바라본 세 방정식

  • 송종철
    • Journal for History of Mathematics
    • /
    • v.15 no.3
    • /
    • pp.59-64
    • /
    • 2002
  • This paper investigates a history of Fourier Series for the heat equation and how deeply it is related to modern famous three equations, Navier-Stokes equations in fluid dynamics, drift-diffusion equations in semiconductor, and Black-Scholes equation in finance. We also propose improved models for the heat equation with finite propagation speeds.

  • PDF

DEVELOPMENT OF A HIGH-ORDER IMPLICIT DISCONTINUOUS GALERKIN METHOD FOR SOLVING COMPRESSIBLE NAVIER-STOKES EQUATIONS (압축성 Navier-Stokes 방정식 해를 위한 고차 정확도 내재적 불연속 갤러킨 기법의 개발)

  • Choi, J.H.;Lee, H.D.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.72-83
    • /
    • 2011
  • A high-order discontinuous Galerkin method for the two-dimensional compressible Navier-Stokes equations was developed on unstructured triangular meshes. For this purpose, the BR2 methd(the second Bassi and Rebay discretization) was adopted for space discretization and an implicit Euler backward method was used for time integration. Numerical tests were conducted to estimate the convergence order of the numerical solutions of the Poiseuille flow for which analytic solutions are available for comparison. Also, the flows around a flat plate, a 2-D circular cylinder, and an NACA0012 airfoil were numerically simulated. The numerical results showed that the present implicit discontinuous Galerkin method is an efficient method to obtain very accurate numerical solutions of the compressible Navier-Stokes equations on unstructured meshes.

Parametric Study on the Aerodynamic Design of Axial-Flow Turbine Blades Using Two-Dimensional Navier-Stokes Equations (Navier-Stokes 방정식에 의한 축류터빈 블레이드의 공력학적 설계변수 특성 연구)

  • Chung, Ki-Seob;Chung, Hee-Taeg;Park, Jun-Young;Baek, Je-Hyun;Chang, Beom-Ik;Cho, Soo-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.169-175
    • /
    • 2000
  • A design method for transonic turbine blades is developed based on Navier-Stokes equations. The present computing process is done on the four separate steps, 1.e., determination of the blade profile, generation of the computational grids, cascade flow simulation and analysis of the computed results in the sense of the aerodynamic performance. The blade shapes are designed using the cubic polynomials under the control of the design parameters. Numerical methods for the flow equations are based on Van-Leer's FVS with an upwind TVD scheme on the finite volume. Applications are made to the VKI transonic rotor blades. Computed results are analyzed with respect to the aerodynamic performance and are compared with the experimental data.

  • PDF

Navier-Stokes Analysis of Two Dimensional Cascade Flow (2차원 익렬유동의 Navier-Stokes 해석)

  • 정희택;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.313-324
    • /
    • 1992
  • Two-dimensional Navier-Stokes code has been developed for analysis of turbomachinery blade rows and other internal flows. The Navier-Stokes equations are written in a Cartesian coordinate system, then mapped into a generalized body-fitted coordinate system. All direction of viscous terms are incorporated and turbulent effects are modeled using the Baldwin-Lomax algebraic model. Equation are discretized using finite difference method on the C-type grids and solved using implicit LU-ADI decomposition scheme. Calculations are made at a VKI turbine cascade flow in a transonic wind-tunnel and compared to experimental data. Present numerical scheme is shown to be in good agreement with the previous experimental results and simulates the two-dimensional viscous flow phenomena.

DEVELOPMENT OF A NUMERICAL TECHNIQUE FOR IMPACT AND SPREADING OF A DROPLET CONTAINING PARTICLES ON THE SOLID SUBSTRATE (미세입자분산 액적의 고체면에서 충돌과 퍼짐현상에 관한 직접수치해석 기법개발)

  • Jeong, Hyun-Jun;Hwang, Wook-Ryol;Kim, Chong-Youp
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.8-13
    • /
    • 2008
  • We present a numerical simulation technique and some preliminary results of the impact and spreading of a droplet containing particles on the solid substrate in 2D. We used the 2nd-order Adams-Bashforth / Crank-Nicholson method to solve the Navier-Stokes equation and employed the level-set method with the continuous surface stress for description of droplet spreading with interfacial tension. The impact velocity has been generated by the instantaneous gravity. The distributed Lagrangian-multipliers method has been combined for the implicit treatment of rigid particles and the discontinuous Galerkin method has been used for the stabilization of the interface advection equation. We investigated the droplet spreading by the inertial force and discussed effects of the presence of particles on the spreading behavior using an example problem. We observed reduced oscillation and spread for the particulate droplet.