• 제목/요약/키워드: Stock investment

검색결과 519건 처리시간 0.024초

뉴스와 주가 : 빅데이터 감성분석을 통한 지능형 투자의사결정모형 (Stock-Index Invest Model Using News Big Data Opinion Mining)

  • 김유신;김남규;정승렬
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.143-156
    • /
    • 2012
  • 누구나 뉴스와 주가 사이에는 밀접한 관계를 있을 것이라 생각한다. 그래서 뉴스를 통해 투자기회를 찾고, 투자이익을 얻을 수 있을 것으로 기대한다. 그렇지만 너무나 많은 뉴스들이 실시간으로 생성 전파되며, 정작 어떤 뉴스가 중요한지, 뉴스가 주가에 미치는 영향은 얼마나 되는지를 알아내기는 쉽지 않다. 본 연구는 이러한 뉴스들을 수집 분석하여 주가와 어떠한 관련이 있는지 분석하였다. 뉴스는 그 속성상 특정한 양식을 갖지 않는 비정형 텍스트로 구성되어있다. 이러한 뉴스 컨텐츠를 분석하기 위해 오피니언 마이닝이라는 빅데이터 감성분석 기법을 적용하였고, 이를 통해 주가지수의 등락을 예측하는 지능형 투자의사결정 모형을 제시하였다. 그리고, 모형의 유효성을 검증하기 위하여 마이닝 결과와 주가지수 등락 간의 관계를 통계 분석하였다. 그 결과 뉴스 컨텐츠의 감성분석 결과값과 주가지수 등락과는 유의한 관계를 가지고 있었으며, 좀 더 세부적으로는 주식시장 개장 전 뉴스들과 주가지수의 등락과의 관계 또한 통계적으로 유의하여, 뉴스의 감성분석 결과를 이용해 주가지수의 변동성 예측이 가능할 것으로 판단되었다. 이렇게 도출된 투자의사결정 모형은 여러 유형의 뉴스 중에서 시황 전망 해외 뉴스가 주가지수 변동을 가장 잘 예측하는 것으로 나타났고 로지스틱 회귀분석결과 분류정확도는 주가하락 시 70.0%, 주가상승 시 78.8%이며 전체평균은 74.6%로 나타났다.

A Sectoral Stock Investment Strategy Model in Indonesia Stock Exchange

  • DEFRIZAL, Defrizal;ROMLI, Khomsahrial;PURNOMO, Agus;SUBING, Hengky Achmad
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권1호
    • /
    • pp.15-22
    • /
    • 2021
  • This study aims to obtain a stock investment strategy model based on the industrial sector in Indonesia Stock Exchange (IDX). This study uses IDX data for the period of January 1996 to December 2016. This study uses the Markov Regime Switching Model to identify trends in market conditions that occur in industrial sectors on IDX. Furthermore, by using the Logit Regression Model, we can see the influence of economic factors in determining trends in market conditions sectorally and the probability of trends in market conditions. This probability can be the basis for determining stock investment decisions in certain sectors. The results showed descriptively that the stocks of the consumer goods industry sector had the highest average return and the lowest standard deviation. The trend in sectoral stock market conditions that occur in IDX can be divided into two conditions, namely bullish condition (high returns and low volatility) and bearish condition (low returns and high volatility). Differences in the conditions are mainly due to differences in volatility. The use of a Logit Regression Model to produce probability of market conditions and to estimate the influence of economic factors in determining stock market conditions produces models that have varying predictive abilities.

철도 연구개발투자와 지식축적량 분석 (The analysis of the railroad R&D investment and R&D Stock)

  • 박만수;이희성;문대섭
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.791-794
    • /
    • 2009
  • Each nation of the world is intensively propelling the R&D investment to solve the financial crisis and worldwide economic recession occurred from last year. This means the world economic is under economic system based on the knowledge. So, The R&D is continuously propelled for possession of the technology through the R&D stock and which is core in the knowledge based economic system. In this world stream, our government is also increasing the R&D investment and checked the technology level through surveying the R&D stock and corn parison of each industry or world. The R&D investment of the railroad is continued but there is no data of the R&D stock. So, surveying the railroad R&D stock and comparing with korea industry is processed.

  • PDF

Behavioral Factors on Individual Investors' Decision Making and Investment Performance: A Survey from the Vietnam Stock Market

  • CAO, Minh Man;NGUYEN, Nhu-Ty;TRAN, Thanh-Tuyen
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권3호
    • /
    • pp.845-853
    • /
    • 2021
  • The stock market shows the current health of an economy, and investment performance represents it. This study aims to clarify the relationship between financial behavior and investment decisions as well as its impact on investment results. Determine the influence of behavioral factors on individual investors' investment decisions and investment performance on the Vietnam stock market. The study surveyed 250 investors. The main analytical methods used are Exploratory Factor Analysis (EFA), Confirmatory Factor Analysis (CFA), and Structural Equation Modeling (SEM). Research results show that Heuristic, Prospect, Market, and Herding directly and positively affect investment decision-making. Besides, the above factors have a direct and positive effect on investment performance. In particular, the Prospect factor has the strongest influence on investment decision-making and investment performance. The major findings of this study suggested that the important role of Heuristic, Prospect, Market, and Herding on Investment Decision-making and Investment Performance. Prospect had the strongest impact on Investment decision-making (β = 0.275). Heuristic had the second strongest impact (β = 0.257), then Herding (β = 0.202), and finally Market (β = 0.189) had the weakest effect. Regarding Investment Performance, the Prospect factor has a higher degree of impact than Heuristic Herding and Market.

온라인 주식게시판 정보와 주식시장 활동에 관한 상관관계 연구 (A Study about the Correlation between Information on Stock Message Boards and Stock Market Activity)

  • 김현모;윤호영;소리;박재홍
    • Asia pacific journal of information systems
    • /
    • 제24권4호
    • /
    • pp.559-575
    • /
    • 2014
  • Individual investors are increasingly flocking to message boards to seek, clarify, and exchange information. Businesses like Seekingalpha.com and business magazines like Fortune are evaluating, synthesizing, and reporting the comments made on message boards or blogs. In March of 2012, Yahoo! Finance Message Boards recorded 45 million unique visitors per month followed by AOL Money and Finance (19.8 million), and Google Finance (1.6 million) [McIntyre, 2012]. Previous studies in the finance literature suggest that online communities often provide more accurate information than analyst forecasts [Bagnoli et al., 1999; Clarkson et al., 2006]. Some studies empirically show that the volume of posts in online communities have a positive relationship with market activities (e.g., trading volumes) [Antweiler and Frank, 2004; Bagnoli et al., 1999; Das and Chen, 2007; Tumarkin and Whitelaw, 2001]. The findings indicate that information in online communities does impact investors' investment decisions and trading behaviors. However, research explicating the correlation between information on online communities and stock market activities (e.g., trading volume) is still evolving. Thus, it is important to ask whether a volume of posts on online communities influences trading volumes and whether trading volumes also influence these communities. Online stock message boards offer two different types of information, which can be explained using an economic and a psychological perspective. From a purely economic perspective, one would expect that stock message boards would have a beneficial effect, since they provide timely information at a much lower cost [Bagnoli et al., 1999; Clarkson et al., 2006; Birchler and Butler, 2007]. This indicates that information in stock message boards may provide valuable information investors can use to predict stock market activities and thus may use to make better investment decisions. On the other hand, psychological studies have shown that stock message boards may not necessarily make investors more informed. The related literature argues that confirmation bias causes investors to seek other investors with the same opinions on these stock message boards [Chen and Gu, 2009; Park et al., 2013]. For example, investors may want to share their painful investment experiences with others on stock message boards and are relieved to find they are not alone. In this case, the information on these stock message boards mainly reflects past experience or past information and not valuable and predictable information for market activities. This study thus investigates the two roles of stock message boards-providing valuable information to make future investment decisions or sharing past experiences that reflect mainly investors' painful or boastful stories. If stock message boards do provide valuable information for stock investment decisions, then investors will use this information and thereby influence stock market activities (e.g., trading volume). On the contrary, if investors made investment decisions and visit stock message boards later, they will mainly share their past experiences with others. In this case, past activities in the stock market will influence the stock message boards. These arguments indicate that there is a correlation between information posted on stock message boards and stock market activities. The previous literature has examined the impact of stock sentiments or the number of posts on stock market activities (e.g., trading volume, volatility, stock prices). However, the studies related to stock sentiments found it difficult to obtain significant results. It is not easy to identify useful information among the millions of posts, many of which can be just noise. As a result, the overall sentiments of stock message boards often carry little information for future stock movements [Das and Chen, 2001; Antweiler and Frank, 2004]. This study notes that as a dependent variable, trading volume is more reliable for capturing the effect of stock message board activities. The finance literature argues that trading volume is an indicator of stock price movements [Das et al., 2005; Das and Chen, 2007]. In this regard, this study investigates the correlation between a number of posts (information on stock message boards) and trading volume (stock market activity). We collected about 100,000 messages of 40 companies at KOSPI (Korea Composite Stock Price Index) from Paxnet, the most popular Korean online stock message board. The messages we collected were divided into in-trading and after-trading hours to examine the correlation between the numbers of posts and trading volumes in detail. Also we collected the volume of the stock of the 40 companies. The vector regression analysis and the granger causality test, 3SLS analysis were performed on our panel data sets. We found that the number of posts on online stock message boards is positively related to prior stock trade volume. Also, we found that the impact of the number of posts on stock trading volumes is not statistically significant. Also, we empirically showed the correlation between stock trading volumes and the number of posts on stock message boards. The results of this study contribute to the IS and finance literature in that we identified online stock message board's two roles. Also, this study suggests that stock trading managers should carefully monitor information on stock message boards to understand stock market activities in advance.

머신러닝 기반 가치투자를 통한 주식 종목 선정 연구: 내재가치를 중심으로 (Selecting Stock by Value Investing based on Machine Learning: Focusing on Intrinsic Value)

  • 김윤승;유동희
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제32권1호
    • /
    • pp.179-199
    • /
    • 2023
  • Purpose This study builds a prediction model to find stocks that can reach intrinsic value among KOSPI and KOSDAQ-listed companies to improve the stability and profitability of the stock investment. And investment simulations are conducted to verify whether stock investment performance is improved by comparing the prediction model, random stock selection, and the market indexes. Design/methodology/approach Value investment theory and machine learning techniques are applied to build the model. Various experiments find conditions such as the algorithm with the best predictive performance, learning period, and intrinsic value-reaching period. This study selects stocks through the prediction model learned with inventive variables, does not limit the holding period after buying to reach the intrinsic value of the stocks, and targets all KOSPI and KOSDAQ companies. The stock and financial data are collected for 21 years (2001-2021). Findings As a result of the experiment, using the random forest technique, the prediction model's performance was the best with one year of learning period and within one year of the intrinsic value reaching period. As a result of the investment simulation, the cumulative return of the prediction model was up to 1.68 times higher than the random stock selection and 17 times higher than the KOSPI index. The usefulness of the prediction model was confirmed in that the number of intrinsic values reaching the predicted stock was up to 70% higher than the random selection.

청년 주식투자자들의 신용대출 경험에 관한 탐색적 연구 (An Exploratory study on the Experiences of Youth's Stock Investment with Credit Loans)

  • 이동준;한창근
    • 한국콘텐츠학회논문지
    • /
    • 제21권9호
    • /
    • pp.771-789
    • /
    • 2021
  • 본 연구의 목적은 청년 주식투자자들의 신용대출 경험과 그 행태를 확인하는데 있다. 이를 위해 본 연구는 2020년 9월부터 동년 12월까지 연구참여자 7명과 1:1 심층면담을 통해 자료를 확보 후, 분석에 활용했다. 수집된 자료는 Creswell(2015)이 제시한 사례연구 방법으로 분석했다. 분석결과, 사례 내 연구방법을 바탕으로 참여자들이 어떻게 신용대출 경험을 갖고 주식에 투자하게 되었는지에 대한 일련의 과정과 이유를 알 수 있었으며 19개의 공통범주를 도출할 수 있었다. 이를 바탕으로 연구참여자들의 경험을 '주식투자의 입문', '주식투자 몰입', '신용대출을 통한 주식투자', '신용대출 주식투자의 결과'로 구분할 수 있었다. 본 연구는 분석결과를 바탕으로 주식투자에 대한 위험성 알림, 신용거래 주식에 대한 규제, 청년 세대를 위한 자산형성 프로그램 개발 등을 함의점으로 제시하고 있다.

의사결정 트리를 이용한 학습 에이전트 단기주가예측 시스템 개발 (A Development for Short-term Stock Forecasting on Learning Agent System using Decision Tree Algorithm)

  • 서장훈;장현수
    • 대한안전경영과학회지
    • /
    • 제6권2호
    • /
    • pp.211-229
    • /
    • 2004
  • The basis of cyber trading has been sufficiently developed with innovative advancement of Internet Technology and the tendency of stock market investment has changed from long-term investment, which estimates the value of enterprises, to short-term investment, which focuses on getting short-term stock trading margin. Hence, this research shows a Short-term Stock Price Forecasting System on Learning Agent System using DTA(Decision Tree Algorithm) ; it collects real-time information of interest and favorite issues using Agent Technology through the Internet, and forms a decision tree, and creates a Rule-Base Database. Through this procedure the Short-term Stock Price Forecasting System provides customers with the prediction of the fluctuation of stock prices for each issue in near future and a point of sales and purchases. A Human being has the limitation of analytic ability and so through taking a look into and analyzing the fluctuation of stock prices, the Agent enables man to trace out the external factors of fluctuation of stock market on real-time. Therefore, we can check out the ups and downs of several issues at the same time and figure out the relationship and interrelation among many issues using the Agent. The SPFA (Stock Price Forecasting System) has such basic four phases as Data Collection, Data Processing, Learning, and Forecasting and Feedback.

Parrondo Paradox and Stock Investment

  • Cho, Dong-Seob;Lee, Ji-Yeon
    • 응용통계연구
    • /
    • 제25권4호
    • /
    • pp.543-552
    • /
    • 2012
  • Parrondo paradox is a counter-intuitive phenomenon where two losing games can be combined to win or two winning games can be combined to lose. When we trade stocks with a history-dependent Parrondo game rule (where we buy and sell stocks based on recent investment outcomes) we found Parrondo paradox in stock trading. Using stock data of the KRX from 2008 to 2010, we analyzed the Parrondo paradoxical cases in the Korean stock market.

Financial Ratio, Macro Economy, and Investment Risk on Sharia Stock Return

  • WIDAGDO, Bambang;JIHADI, M.;BACHITAR, Yanuar;SAFITRI, Oky Ervina;SINGH, Sanju Kumar
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권12호
    • /
    • pp.919-926
    • /
    • 2020
  • The purpose of this study is to analyze and test the effect of financial ratios and macroeconomics on Islamic stock returns listed in Jakarta Islamic Index (JII) other than to assess whether investment risk can be an intervening variable in this study. The type of research is explanatory in nature with a quantitative descriptive approach. The data used is based on secondary sources with a sample group of 29 companies listed on JII for a 5-year period ending 31 December 2018. The data obtained were analyzed by using SEM (Structural Equation Model) with AMOS (Analysis Moment of Structural) 21 program. The results of the study show that only financial ratios affect sharia stock returns and investment risk, while the mediation test found that investment risk does not act as a mediating variable between financial ratios and macroeconomics and Islamic stock return. These findings indicate that the role of the company's financial health is very important. Besides affecting the rate of return obtained, the company's financial health can also reflect the level of risk that investors will accept in the future. By improving financial performance properly, a company will have a positive impact on various interested parties and minimize the level of investor losses.