기계 학습은 컴퓨터를 학습시켜 분류나 예측에 사용되는 기술이다. 그 중 SVM은 빠르고 신뢰할 만한 기계 학습 방법으로 분류나 예측에 널리 사용되고 있다. 본 논문에서는 재무 정보를 기반으로 SVM을 이용하여 주식 가격의 예측력을 검증한다. 이를 통해 회사의 내재 가치를 나타내는 재무정보가 주식 가격 예측에 얼마나 효과적인지를 평가할 수 있다. 회사 재무 정보를 SVM의 입력으로 하여 주가의 상승이나 하락 여부를 예측한다. 다른 기법과의 비교를 위해 전문가 점수와 기계 학습방법인 인공신경망, 결정트리, 적응형부스팅을 통한 예측 결과와 비교하였다. 비교 결과 SVM의 성능이 실행 시간이나 예측력면에서 모두 우수하였다.
골든크로스를 흔히 매수의 신호로 인식하지만, 주식시장은 변동성이 매우 크기에 골든크로스만으로 주식의 등락 여부를 예상하고 의사결정을 내리기에는 무리가 있다. 마찬가지로, 이러한 주가 데이터의 불확실성은 기존의 시계열 기반의 예측을 더욱 어렵게 한다. 본 논문에서는 골든크로스를 하나의 사건으로 인식하여, time-invariant 한 접근을 시도하고자 한다. LSTM 신경망 기법을 사용하여 골든크로스 이후의 주가 변화율을 예측하고, 기존의 시계열 분석에서 도출한 성능과 종목별로 비교한다. 또한, 0을 기준으로 한 주가 변화율의 등락을 혼동행렬로 분류하여 일반화 분류 성능을 입증한다. 최종적으로 본 논문은 예측 정밀도가 83%인 모델을 제안하였다. 골든크로스가 나타날 때 모든 상황에서 매수를 결정하기보다 모델을 활용하여 투자자의 투자 자본 손실을 방지할 수 있다.
본 연구에서는 심층 신경망모형을 사용하여 KOSPI 100의 개별 종목인 기아차 및 신세계의 주가를 예측하였다. 예측변수로는 흔히 사용되었던 기술적 변수들과 함께 온라인 뉴스로부터 도출된 감성변수를 사용하였다. 특히 소셜 네트워크 분석을 활용하여 분류된 산업군에 특화된 감성사전을 구축한 후, 감성분석을 통하여 산업군에 속하는 각 기업들의 감성점수의 평균을 산업군 감성변수로 생성하였다. 여러 예측변수들의 조합으로 이루어진 모형들 중에서 기술적 변수와 산업군의 온라인 뉴스에 기초한 감성변수를 함께 사용하였을 때 우수한 예측력과 수익률을 보여주었다.
주가가 과연 예측가능한가의 여부는 이론적으로나 실무적으로 매우 중요한 의미를 가져 이 부분에 대해 많은 연구가 이루어져 왔으나 많은 기존연구들은 주가가 예측 가능하다는 결론을 얻지 못하고 있으며, 예측 가능하다는 연구에서도 예측력이 크지 않게 나타나고 있다. 이러한 실증결과는 실증모형의 선택이 적절하지 못한데서 나타날 수 있다는 가능성을 배제할 수 없다. 기존연구들이 실증분석에서 선형모형을 사용했는데, 선형모형으로는 주가의 예측가능성을 정확히 검증하기 어려운 현실적 요인들이 존재할 수 있다. 증권시장에는 시장실패를 방지하기 위한 규제나 제도 및 시장의 불완전성으로 인해 주가움직임에 선형모형으로 추정하기 어려운 특이패턴이 발생할 수 있기 때문이다. 이 논문에서는 이러한 특이패턴이 존재한다는 가능성을 전제로 비모수적 모형, 그 중에서도 인공신경망모형을 이용하여 주가예측 가능성을 재검증해 보고자 한다. 특히 인공신경망모형을 이용한 예측성과를 동일한 구조를 가지는 선형모형의 성과와 비교함으로써 특이패턴의 고려가 주가예측에 어떤 개선을 제공할 수 있는지를 검증해 보고자 한다. 분석결과를 요약하면, 인공신경망모형이 예측력을 가질 수 있으며, 특히 유사한 구조를 가지는 선형모형보다 우월한 성과를 제공할 수 있다는 가능성을 발견하였다. 이는 선형모형으로 추정하기 어려운 특이패턴이 주가움직임에 존재하며, 따라서 이러한 패턴을 반영할 수 있는 인공신경망모형이 주가예측에 유용하게 사용될 수 있다는 것을 보이는 결과라 볼 수 있다.
본 논문의 연구 취지는 예측하고자 하는 다음 날과 이전 날의 시가 사이 변동률을 예측값으로 두고 시가를 예측하는 기존 논문들과는 다르게 예측하고자 하는 다음날의 주가 순위를 일정한 간격으로 분할하여 생성된 각 구간마다의 시가 변동률을 예측값으로 하는 모델을 통하여 최종적인 다음날의 시가 변동률을 예측하는 새로운 시계열 데이터 예측 방식을 제안하고자 한다. 예측값의 세분화 정도와 입력 데이터의 종류에 따른 모델의 성능 변화를 분석했으며 연구 결과 예측값의 세분화 정도에 따른 모델의 예측값과 실제값의 차이가 예측값의 세분화 개수가 3일 때 큰 폭으로 감소한다는 사실도 도출해 낼 수 있었다.
본 연구에서는 주식시장에서 정보 생산자로서 중요한 기능을 수행하는 '애널리스트'의 이익 예측치 편의와 정확도가 증권사와 평가 대상 기업의 동일인 소유 여부에 의하여 영향을 받는지를 점검하였다. 소유구조에 기반한 증권사와 평가 대상 기업 간의 특수관계에 의하여 평가자의 행태가 달라지고 그로 인하여 불특정 다수의 투자자에게 부정적 영향이 초래되는 경우 적절한 규제조치가 필요할 것이라는 측면에서 제기된 문제의 실천적 의미를 찾을 수 있다. 물론 평판효과(reputation effect)가 중요한 역할을 하는 증권업과 애널리스트 시장에서 시장규율(market discipline)이 원활히 작동한다면 특수관계로 인해 왜곡된 정보를 제공할 유인이 사라질 것이며 별도의 규제가 필요하지는 않을 것이다. 분석 결과에 의하면, 특수관계가 존재할 경우 양의 예측편의가 발생하는 빈도가 높은 것은 사실이나, 예측편의의 크기를 포함한 종합적 상관관계를 고려할 경우 증권사와 평가 대상 기업 간의 특수관계가 유의한 예측편의를 발생시키는 것으로 보기는 어려우며, 정확도 또한 의미있는 차이를 보이는 것으로 결론짓기는 어려운 것으로 나타났다. 이는 적어도 현재까지는 증권사가 소유구조로 인하여 왜곡된 정보를 생산하려는 유인보다 정확한 정보를 제공한다는 평판을 지키려는 유인이 더욱 크게 작용한 결과 관측되는 현상으로 해석될 수 있다.
Purpose - This paper examines the effect of related party transactions on crash firm-specific stock price crash risk. Ownership of a typical Korean conglomerate is concentrated in a single family. In those entities, management and board positions are often filled by family members. Therefore, a dominant shareholder can benefit from related party transactions. In Korea, firms have to report related party transactions in financial statement footnotes. However, those are not disclosed in detail. The more related party transactions are the greater information risk. Thus, companies with related party transactions are likely to experience stock price crashes. Research design, data, and methodology - 2,598 firm-year observations are used for the main analysis. Those samples are from TS2000 database from 2009 to 2013, and the database covers KOSPI-listed firms in Korea. The proxy for related party transactions (RTP) is calculated by dividing total transactions to the related-party by total sales. A dummy variable is used as a dependent variable (CRASH) in the regression model. Logistic regression is used to explain the relationship between related party transactions and crash risk. Then, the sample was separated into two groups; tunneling firms and propping firms. The relation between related party transactions and crash risk variances with features of the transaction were investigated. Results - Using a sample of KOSPI-listed firms in TS2000 database for the period of 2009-2013, I find that stock price crash risk increases as the trade volume of related-party transactions increases. Specifically, I find that the coefficient of RPT is significantly positive, supporting the prediction. In addition, this relationship is strong and robust in tunneling firms. Conclusions - The results report that firms with related party transactions are more likely to experience stock price crashes. The results mean that related party transactions increase the possibility of future stock price crashes by enlarging information asymmetry between controlling shareholders and minority shareholders. In case of tunneling, it could be seen that related party transactions are positively associated with stock crash risk. The result implies that the characteristic of the transaction influences crash risk. This study is related to a literature that investigates the effect of related party transactions on the stock market.
주식 투자에서 매수와 매도의 타이밍을 결정하는 것은 주식 투자의 수익률 올리기 위해 가장 중요한 요인 중에 하나이다. 주식은 싸게 사서 비싸게 팔면 이익이 되지만, 비싸게 사서 싸게 팔면 손해가 된다. 주식의 가격을 결정하는 매수와 매도의 물량에 의해 가격이 결정이 되고, 매수와 매도는 기업실적, 경제지표와도 관련이 있다. CNN에서 제공하는 공포와 탐욕지수는 7가지 요소를 사용하고, 각 요소에 가중치를 부여하여 탐욕과 두려움으로 정의한 가중치 평균을 0~100 사이의 척도로 계산하여 매일 발표하고 있다. 지수가 0에 가까우면 주식시장 심리가 두려운것이고, 100에 가까우면 탐욕스러운 것이다. 따라서 미국 S&P 500 지수를 CNN 공포와 탐욕지수에 따른 매수와 매도를 할 경우 최대 수익률이 발생하는 매매 기준을 분석하여 최적의 매수와 매도 타이밍을 제시하여 주식투자에 수익률을 높일 수 있는 방안을 제시하고자 한다.
Eman Alasmari;Mohamed Hamdy;Khaled H. Alyoubi;Fahd Saleh Alotaibi
International Journal of Computer Science & Network Security
/
제24권2호
/
pp.113-123
/
2024
Stock market news sentiment analysis (SA) aims to identify the attitudes of the news of the stock on the official platforms toward companies' stocks. It supports making the right decision in investing or analysts' evaluation. However, the research on Arabic SA is limited compared to that on English SA due to the complexity and limited corpora of the Arabic language. This paper develops a model of sentiment classification to predict the polarity of Arabic stock news in microblogs. Also, it aims to extract the reasons which lead to polarity categorization as the main economic causes or aspects based on semantic unity. Therefore, this paper presents an Arabic SA approach based on the logistic regression model and the Bidirectional Encoder Representations from Transformers (BERT) model. The proposed model is used to classify articles as positive, negative, or neutral. It was trained on the basis of data collected from an official Saudi stock market article platform that was later preprocessed and labeled. Moreover, the economic reasons for the articles based on semantic unit, divided into seven economic aspects to highlight the polarity of the articles, were investigated. The supervised BERT model obtained 88% article classification accuracy based on SA, and the unsupervised mean Word2Vec encoder obtained 80% economic-aspect clustering accuracy. Predicting polarity classification on the Arabic stock market news and their economic reasons would provide valuable benefits to the stock SA field.
본 연구의 목적은 굴참나무 임분의 직경분포와 ha당 재적 및 탄소량을 추정하는데 있다. 영급과 임분구조를 고려하여 굴참나무 임분에서 354개소를 조사하고 시료를 수집하였다. 임령에 따른 직경분포를 파악하기 위하여 Weibull 모형을 사용하였으며 모수의 추정은 단순적률법(Simplified method-of-moments)을 이용하였다. 사용된 자료 중에서 80%는 모형개발에 사용하였고, 나머지 20%는 개발된 모형의 검정에 사용하였다. 모형의 검정에는 적합도지수(Fitness Index)와 평균오차제곱(Root Mean Square Error), Kolmogorov-Smirnov 통계치가 이용되었다. 검정자료에서 추정된 지위지수, 수고, 재적식의 적합도지수는 각각 0.967, 0.727, 0.988이고 평균오차제곱은 2.763, 1.817, 0.007이며, Weibull 모형의 Kolmogorov-Smirnov 적합도는 75%를 나타내었다. 본 연구를 통해 개발된 모형에서 50년생의 굴참나무임분이 14의 지위지수와 697본의 분수를 나타내는 경우, 재적은 $188.69m^3/ha$이고 지상부 탄소량은 90.30 tC/ha으로 추정되었다. 본 연구의 결과는 활엽수 수종에 대한 생장정보의 제공이 가능하고 굴참나무 탄소량 추정에 활용이 가능하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.