• 제목/요약/키워드: Stock Prediction

검색결과 290건 처리시간 0.024초

SVM 기반의 재무 정보를 이용한 주가 예측 (SVM based Stock Price Forecasting Using Financial Statements)

  • 허준영;양진용
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권3호
    • /
    • pp.167-172
    • /
    • 2015
  • 기계 학습은 컴퓨터를 학습시켜 분류나 예측에 사용되는 기술이다. 그 중 SVM은 빠르고 신뢰할 만한 기계 학습 방법으로 분류나 예측에 널리 사용되고 있다. 본 논문에서는 재무 정보를 기반으로 SVM을 이용하여 주식 가격의 예측력을 검증한다. 이를 통해 회사의 내재 가치를 나타내는 재무정보가 주식 가격 예측에 얼마나 효과적인지를 평가할 수 있다. 회사 재무 정보를 SVM의 입력으로 하여 주가의 상승이나 하락 여부를 예측한다. 다른 기법과의 비교를 위해 전문가 점수와 기계 학습방법인 인공신경망, 결정트리, 적응형부스팅을 통한 예측 결과와 비교하였다. 비교 결과 SVM의 성능이 실행 시간이나 예측력면에서 모두 우수하였다.

Time-Invariant Stock Movement Prediction After Golden Cross Using LSTM

  • Sumin Nam;Jieun Kim;ZoonKy Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권8호
    • /
    • pp.59-66
    • /
    • 2023
  • 골든크로스를 흔히 매수의 신호로 인식하지만, 주식시장은 변동성이 매우 크기에 골든크로스만으로 주식의 등락 여부를 예상하고 의사결정을 내리기에는 무리가 있다. 마찬가지로, 이러한 주가 데이터의 불확실성은 기존의 시계열 기반의 예측을 더욱 어렵게 한다. 본 논문에서는 골든크로스를 하나의 사건으로 인식하여, time-invariant 한 접근을 시도하고자 한다. LSTM 신경망 기법을 사용하여 골든크로스 이후의 주가 변화율을 예측하고, 기존의 시계열 분석에서 도출한 성능과 종목별로 비교한다. 또한, 0을 기준으로 한 주가 변화율의 등락을 혼동행렬로 분류하여 일반화 분류 성능을 입증한다. 최종적으로 본 논문은 예측 정밀도가 83%인 모델을 제안하였다. 골든크로스가 나타날 때 모든 상황에서 매수를 결정하기보다 모델을 활용하여 투자자의 투자 자본 손실을 방지할 수 있다.

산업군별 온라인 뉴스에 기초한 감성 예측변수를 포함하는 심층 신경망모형에 의한 주가 예측 (Prediction of stock prices using deep neural network models including an emotional predictor based on online news by industrial groups)

  • 임준형;손영숙
    • 응용통계연구
    • /
    • 제33권4호
    • /
    • pp.483-497
    • /
    • 2020
  • 본 연구에서는 심층 신경망모형을 사용하여 KOSPI 100의 개별 종목인 기아차 및 신세계의 주가를 예측하였다. 예측변수로는 흔히 사용되었던 기술적 변수들과 함께 온라인 뉴스로부터 도출된 감성변수를 사용하였다. 특히 소셜 네트워크 분석을 활용하여 분류된 산업군에 특화된 감성사전을 구축한 후, 감성분석을 통하여 산업군에 속하는 각 기업들의 감성점수의 평균을 산업군 감성변수로 생성하였다. 여러 예측변수들의 조합으로 이루어진 모형들 중에서 기술적 변수와 산업군의 온라인 뉴스에 기초한 감성변수를 함께 사용하였을 때 우수한 예측력과 수익률을 보여주었다.

인공신경망모형을 이용한 주가의 예측가능성에 관한 연구

  • 정용관;윤영섭
    • 재무관리연구
    • /
    • 제15권2호
    • /
    • pp.369-399
    • /
    • 1998
  • 주가가 과연 예측가능한가의 여부는 이론적으로나 실무적으로 매우 중요한 의미를 가져 이 부분에 대해 많은 연구가 이루어져 왔으나 많은 기존연구들은 주가가 예측 가능하다는 결론을 얻지 못하고 있으며, 예측 가능하다는 연구에서도 예측력이 크지 않게 나타나고 있다. 이러한 실증결과는 실증모형의 선택이 적절하지 못한데서 나타날 수 있다는 가능성을 배제할 수 없다. 기존연구들이 실증분석에서 선형모형을 사용했는데, 선형모형으로는 주가의 예측가능성을 정확히 검증하기 어려운 현실적 요인들이 존재할 수 있다. 증권시장에는 시장실패를 방지하기 위한 규제나 제도 및 시장의 불완전성으로 인해 주가움직임에 선형모형으로 추정하기 어려운 특이패턴이 발생할 수 있기 때문이다. 이 논문에서는 이러한 특이패턴이 존재한다는 가능성을 전제로 비모수적 모형, 그 중에서도 인공신경망모형을 이용하여 주가예측 가능성을 재검증해 보고자 한다. 특히 인공신경망모형을 이용한 예측성과를 동일한 구조를 가지는 선형모형의 성과와 비교함으로써 특이패턴의 고려가 주가예측에 어떤 개선을 제공할 수 있는지를 검증해 보고자 한다. 분석결과를 요약하면, 인공신경망모형이 예측력을 가질 수 있으며, 특히 유사한 구조를 가지는 선형모형보다 우월한 성과를 제공할 수 있다는 가능성을 발견하였다. 이는 선형모형으로 추정하기 어려운 특이패턴이 주가움직임에 존재하며, 따라서 이러한 패턴을 반영할 수 있는 인공신경망모형이 주가예측에 유용하게 사용될 수 있다는 것을 보이는 결과라 볼 수 있다.

  • PDF

주가 예측 모델에서의 분할 예측을 통한 성능향상 탐구 (Exploring performance improvement through split prediction in stock price prediction model)

  • 여태건우;유도희;남정원;오하영
    • 한국정보통신학회논문지
    • /
    • 제26권4호
    • /
    • pp.503-509
    • /
    • 2022
  • 본 논문의 연구 취지는 예측하고자 하는 다음 날과 이전 날의 시가 사이 변동률을 예측값으로 두고 시가를 예측하는 기존 논문들과는 다르게 예측하고자 하는 다음날의 주가 순위를 일정한 간격으로 분할하여 생성된 각 구간마다의 시가 변동률을 예측값으로 하는 모델을 통하여 최종적인 다음날의 시가 변동률을 예측하는 새로운 시계열 데이터 예측 방식을 제안하고자 한다. 예측값의 세분화 정도와 입력 데이터의 종류에 따른 모델의 성능 변화를 분석했으며 연구 결과 예측값의 세분화 정도에 따른 모델의 예측값과 실제값의 차이가 예측값의 세분화 개수가 3일 때 큰 폭으로 감소한다는 사실도 도출해 낼 수 있었다.

이해상충과 애널리스트 예측 (Conflict of Interests and Analysts' Forecast)

  • 박창균;연태훈
    • KDI Journal of Economic Policy
    • /
    • 제31권1호
    • /
    • pp.239-276
    • /
    • 2009
  • 본 연구에서는 주식시장에서 정보 생산자로서 중요한 기능을 수행하는 '애널리스트'의 이익 예측치 편의와 정확도가 증권사와 평가 대상 기업의 동일인 소유 여부에 의하여 영향을 받는지를 점검하였다. 소유구조에 기반한 증권사와 평가 대상 기업 간의 특수관계에 의하여 평가자의 행태가 달라지고 그로 인하여 불특정 다수의 투자자에게 부정적 영향이 초래되는 경우 적절한 규제조치가 필요할 것이라는 측면에서 제기된 문제의 실천적 의미를 찾을 수 있다. 물론 평판효과(reputation effect)가 중요한 역할을 하는 증권업과 애널리스트 시장에서 시장규율(market discipline)이 원활히 작동한다면 특수관계로 인해 왜곡된 정보를 제공할 유인이 사라질 것이며 별도의 규제가 필요하지는 않을 것이다. 분석 결과에 의하면, 특수관계가 존재할 경우 양의 예측편의가 발생하는 빈도가 높은 것은 사실이나, 예측편의의 크기를 포함한 종합적 상관관계를 고려할 경우 증권사와 평가 대상 기업 간의 특수관계가 유의한 예측편의를 발생시키는 것으로 보기는 어려우며, 정확도 또한 의미있는 차이를 보이는 것으로 결론짓기는 어려운 것으로 나타났다. 이는 적어도 현재까지는 증권사가 소유구조로 인하여 왜곡된 정보를 생산하려는 유인보다 정확한 정보를 제공한다는 평판을 지키려는 유인이 더욱 크게 작용한 결과 관측되는 현상으로 해석될 수 있다.

  • PDF

특수관계자 거래가 주가급락에 미치는 영향 (The Effect of Related Party Transactions on Crash Risk)

  • 유혜영
    • 산경연구논집
    • /
    • 제9권6호
    • /
    • pp.49-55
    • /
    • 2018
  • Purpose - This paper examines the effect of related party transactions on crash firm-specific stock price crash risk. Ownership of a typical Korean conglomerate is concentrated in a single family. In those entities, management and board positions are often filled by family members. Therefore, a dominant shareholder can benefit from related party transactions. In Korea, firms have to report related party transactions in financial statement footnotes. However, those are not disclosed in detail. The more related party transactions are the greater information risk. Thus, companies with related party transactions are likely to experience stock price crashes. Research design, data, and methodology - 2,598 firm-year observations are used for the main analysis. Those samples are from TS2000 database from 2009 to 2013, and the database covers KOSPI-listed firms in Korea. The proxy for related party transactions (RTP) is calculated by dividing total transactions to the related-party by total sales. A dummy variable is used as a dependent variable (CRASH) in the regression model. Logistic regression is used to explain the relationship between related party transactions and crash risk. Then, the sample was separated into two groups; tunneling firms and propping firms. The relation between related party transactions and crash risk variances with features of the transaction were investigated. Results - Using a sample of KOSPI-listed firms in TS2000 database for the period of 2009-2013, I find that stock price crash risk increases as the trade volume of related-party transactions increases. Specifically, I find that the coefficient of RPT is significantly positive, supporting the prediction. In addition, this relationship is strong and robust in tunneling firms. Conclusions - The results report that firms with related party transactions are more likely to experience stock price crashes. The results mean that related party transactions increase the possibility of future stock price crashes by enlarging information asymmetry between controlling shareholders and minority shareholders. In case of tunneling, it could be seen that related party transactions are positively associated with stock crash risk. The result implies that the characteristic of the transaction influences crash risk. This study is related to a literature that investigates the effect of related party transactions on the stock market.

Fear & Greed Index 기반 미국 주식 단기 매수와 매도 결정 시점 연구 (Research on Determine Buying and Selling Timing of US Stocks Based on Fear & Greed Index)

  • 홍성혁
    • 산업융합연구
    • /
    • 제21권1호
    • /
    • pp.87-93
    • /
    • 2023
  • 주식 투자에서 매수와 매도의 타이밍을 결정하는 것은 주식 투자의 수익률 올리기 위해 가장 중요한 요인 중에 하나이다. 주식은 싸게 사서 비싸게 팔면 이익이 되지만, 비싸게 사서 싸게 팔면 손해가 된다. 주식의 가격을 결정하는 매수와 매도의 물량에 의해 가격이 결정이 되고, 매수와 매도는 기업실적, 경제지표와도 관련이 있다. CNN에서 제공하는 공포와 탐욕지수는 7가지 요소를 사용하고, 각 요소에 가중치를 부여하여 탐욕과 두려움으로 정의한 가중치 평균을 0~100 사이의 척도로 계산하여 매일 발표하고 있다. 지수가 0에 가까우면 주식시장 심리가 두려운것이고, 100에 가까우면 탐욕스러운 것이다. 따라서 미국 S&P 500 지수를 CNN 공포와 탐욕지수에 따른 매수와 매도를 할 경우 최대 수익률이 발생하는 매매 기준을 분석하여 최적의 매수와 매도 타이밍을 제시하여 주식투자에 수익률을 높일 수 있는 방안을 제시하고자 한다.

Arabic Stock News Sentiments Using the Bidirectional Encoder Representations from Transformers Model

  • Eman Alasmari;Mohamed Hamdy;Khaled H. Alyoubi;Fahd Saleh Alotaibi
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.113-123
    • /
    • 2024
  • Stock market news sentiment analysis (SA) aims to identify the attitudes of the news of the stock on the official platforms toward companies' stocks. It supports making the right decision in investing or analysts' evaluation. However, the research on Arabic SA is limited compared to that on English SA due to the complexity and limited corpora of the Arabic language. This paper develops a model of sentiment classification to predict the polarity of Arabic stock news in microblogs. Also, it aims to extract the reasons which lead to polarity categorization as the main economic causes or aspects based on semantic unity. Therefore, this paper presents an Arabic SA approach based on the logistic regression model and the Bidirectional Encoder Representations from Transformers (BERT) model. The proposed model is used to classify articles as positive, negative, or neutral. It was trained on the basis of data collected from an official Saudi stock market article platform that was later preprocessed and labeled. Moreover, the economic reasons for the articles based on semantic unit, divided into seven economic aspects to highlight the polarity of the articles, were investigated. The supervised BERT model obtained 88% article classification accuracy based on SA, and the unsupervised mean Word2Vec encoder obtained 80% economic-aspect clustering accuracy. Predicting polarity classification on the Arabic stock market news and their economic reasons would provide valuable benefits to the stock SA field.

Weibull 분포 모형을 이용한 굴참나무 임분 재적 및 탄소저장량 추정 (Prediction of Stand Volume and Carbon Stock for Quercus variabilis Using Weibull Distribution Model)

  • 손영모;표정기;김소원;이경학
    • 한국산림과학회지
    • /
    • 제101권4호
    • /
    • pp.599-605
    • /
    • 2012
  • 본 연구의 목적은 굴참나무 임분의 직경분포와 ha당 재적 및 탄소량을 추정하는데 있다. 영급과 임분구조를 고려하여 굴참나무 임분에서 354개소를 조사하고 시료를 수집하였다. 임령에 따른 직경분포를 파악하기 위하여 Weibull 모형을 사용하였으며 모수의 추정은 단순적률법(Simplified method-of-moments)을 이용하였다. 사용된 자료 중에서 80%는 모형개발에 사용하였고, 나머지 20%는 개발된 모형의 검정에 사용하였다. 모형의 검정에는 적합도지수(Fitness Index)와 평균오차제곱(Root Mean Square Error), Kolmogorov-Smirnov 통계치가 이용되었다. 검정자료에서 추정된 지위지수, 수고, 재적식의 적합도지수는 각각 0.967, 0.727, 0.988이고 평균오차제곱은 2.763, 1.817, 0.007이며, Weibull 모형의 Kolmogorov-Smirnov 적합도는 75%를 나타내었다. 본 연구를 통해 개발된 모형에서 50년생의 굴참나무임분이 14의 지위지수와 697본의 분수를 나타내는 경우, 재적은 $188.69m^3/ha$이고 지상부 탄소량은 90.30 tC/ha으로 추정되었다. 본 연구의 결과는 활엽수 수종에 대한 생장정보의 제공이 가능하고 굴참나무 탄소량 추정에 활용이 가능하다.