Abstract
We used a deep neural network model for the prediction of the stock prices of Kia Motors and Shinsegae as listed in the KOSPI 100. We used an emotional variable derived from online news in addition to the various technical indicators most often used. The emotional variable used as a predictor variable was generated from the average of the emotional scores for companies in the industrial group after building an emotional dictionary specific to each industrial group classified in a social network analysis. The study was conducted with various combinations of predictors and confirmed that good predictive and profitable power could be expected when jointly using technical indicators and an emotional variable based on online news by industrial groups.
본 연구에서는 심층 신경망모형을 사용하여 KOSPI 100의 개별 종목인 기아차 및 신세계의 주가를 예측하였다. 예측변수로는 흔히 사용되었던 기술적 변수들과 함께 온라인 뉴스로부터 도출된 감성변수를 사용하였다. 특히 소셜 네트워크 분석을 활용하여 분류된 산업군에 특화된 감성사전을 구축한 후, 감성분석을 통하여 산업군에 속하는 각 기업들의 감성점수의 평균을 산업군 감성변수로 생성하였다. 여러 예측변수들의 조합으로 이루어진 모형들 중에서 기술적 변수와 산업군의 온라인 뉴스에 기초한 감성변수를 함께 사용하였을 때 우수한 예측력과 수익률을 보여주었다.