인공신경망모형을 이용한 주가의 예측가능성에 관한 연구

  • Published : 1998.12.31

Abstract

Most of the studies on stock price predictability using the linear model conclude that there are little possibility to predict the future price movement. But some anomalous patterns may be generated by remaining market inefficiency or regulation, market system that is facilitated to prevent the market failure. And these anomalous pattern, if exist, make them difficult to predict the stock price movement with linear model. In this study, I try to find the anomalous pattern using the ANN model. And by comparing the predictability of ANN model with the predictability of correspondent linear model, I want to show the importance of recognitions of anomalous pattern in stock price prediction. I find that ANN model could have the superior performance measured with the accuracy of prediction and investment return to correspondent linear model. This result means that there may exist the anomalous pattern that can't be recognized with linear model, and it is necessary to consider the anomalous pattern to make superior prediction performance.

주가가 과연 예측가능한가의 여부는 이론적으로나 실무적으로 매우 중요한 의미를 가져 이 부분에 대해 많은 연구가 이루어져 왔으나 많은 기존연구들은 주가가 예측 가능하다는 결론을 얻지 못하고 있으며, 예측 가능하다는 연구에서도 예측력이 크지 않게 나타나고 있다. 이러한 실증결과는 실증모형의 선택이 적절하지 못한데서 나타날 수 있다는 가능성을 배제할 수 없다. 기존연구들이 실증분석에서 선형모형을 사용했는데, 선형모형으로는 주가의 예측가능성을 정확히 검증하기 어려운 현실적 요인들이 존재할 수 있다. 증권시장에는 시장실패를 방지하기 위한 규제나 제도 및 시장의 불완전성으로 인해 주가움직임에 선형모형으로 추정하기 어려운 특이패턴이 발생할 수 있기 때문이다. 이 논문에서는 이러한 특이패턴이 존재한다는 가능성을 전제로 비모수적 모형, 그 중에서도 인공신경망모형을 이용하여 주가예측 가능성을 재검증해 보고자 한다. 특히 인공신경망모형을 이용한 예측성과를 동일한 구조를 가지는 선형모형의 성과와 비교함으로써 특이패턴의 고려가 주가예측에 어떤 개선을 제공할 수 있는지를 검증해 보고자 한다. 분석결과를 요약하면, 인공신경망모형이 예측력을 가질 수 있으며, 특히 유사한 구조를 가지는 선형모형보다 우월한 성과를 제공할 수 있다는 가능성을 발견하였다. 이는 선형모형으로 추정하기 어려운 특이패턴이 주가움직임에 존재하며, 따라서 이러한 패턴을 반영할 수 있는 인공신경망모형이 주가예측에 유용하게 사용될 수 있다는 것을 보이는 결과라 볼 수 있다.

Keywords