• Title/Summary/Keyword: Stochastic variable

Search Result 183, Processing Time 0.031 seconds

Reliability-based stochastic finite element using the explicit probability density function

  • Rezan Chobdarian;Azad Yazdani;Hooshang Dabbagh;Mohammad-Rashid Salimi
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.349-359
    • /
    • 2023
  • This paper presents a technique for determining the optimal number of elements in stochastic finite element analysis based on reliability analysis. Using the change-of-variable perturbation stochastic finite element approach, the probability density function of the dynamic responses of stochastic structures is explicitly determined. This method combines the perturbation stochastic finite element method with the change-of-variable technique into a united model. To further examine the relationships between the random fields, discretization of the random field parameters, such as the variance function and the scale of fluctuation, is also performed. Accordingly, the reliability index is calculated based on the explicit probability density function of responses with Gaussian or non-Gaussian random fields in any number of elements corresponding to the random field discretization. The numerical examples illustrate the effectiveness of the proposed method for a one-dimensional cantilever reinforced concrete column and a two-dimensional steel plate shear wall. The benefit of this method is that the probability density function of responses can be obtained explicitly without the use simulation techniques. Any type of random variable with any statistical distribution can be incorporated into the calculations, regardless of the restrictions imposed by the type of statistical distribution of random variables. Consequently, this method can be utilized as a suitable guideline for the efficient implementation of stochastic finite element analysis of structures, regardless of the statistical distribution of random variables.

Simultaneous outlier detection and variable selection via difference-based regression model and stochastic search variable selection

  • Park, Jong Suk;Park, Chun Gun;Lee, Kyeong Eun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.2
    • /
    • pp.149-161
    • /
    • 2019
  • In this article, we suggest the following approaches to simultaneous variable selection and outlier detection. First, we determine possible candidates for outliers using properties of an intercept estimator in a difference-based regression model, and the information of outliers is reflected in the multiple regression model adding mean shift parameters. Second, we select the best model from the model including the outlier candidates as predictors using stochastic search variable selection. Finally, we evaluate our method using simulations and real data analysis to yield promising results. In addition, we need to develop our method to make robust estimates. We will also to the nonparametric regression model for simultaneous outlier detection and variable selection.

Dynamic Decisions using Variable Neighborhood Search for Stochastic Resource-Constrained Project Scheduling Problem (확률적 자원제약 스케줄링 문제 해결을 위한 가변 이웃탐색 기반 동적 의사결정)

  • Yim, Dong Soon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.43 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Stochastic resource-constrained project scheduling problem is an extension of resource-constrained project scheduling problem such that activity duration has stochastic nature. In real situation where activity duration is not known until the activity is finished, open-loop based static policies such as activity-based policy and priority-based policy will not well cope with duration variability. Then, a dynamic policy based on closed-loop decision making will be regarded as an alternative toward achievement of minimal makespan. In this study, a dynamic policy designed to select activities to start at each decision time point is illustrated. The performance of static and dynamic policies based on variable neighborhood search is evaluated under the discrete-event simulation environment. Experiments with J120 sets in PSPLIB and several probability distributions of activity duration show that the dynamic policy is superior to static policies. Even when the variability is high, the dynamic policy provides stable and good solutions.

Shape Optimization of Electric Machine Considering Uncertainty of Design Variable by Stochastic Finite Element Method (확률유한요소법을 이용한 설계변수의 불확실성을 고려한 전기기기의 형상최적설계)

  • Hur, Jin;Hong, Jung-Pyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.4
    • /
    • pp.219-225
    • /
    • 2000
  • This paper presents the shape optimization considering the uncertainty of design variable to find robust optimal solution that has insensitive performance to its change of design variable. Stochastic finite element method (SFEM) is used to treat input data as stochastic variables. It is method that the potential values are series form for the expectation and small variation. Using correlation function of their variables, the statistics of output obtained form the input data distributed. From this, design considering uncertainty of design variables.

  • PDF

스테인레스강 저주기 피로 수명 분포의 추계적 모델링

  • 이봉훈;이순복
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2000.04a
    • /
    • pp.213-222
    • /
    • 2000
  • In present study, a stochastic model is developed for the low cycle fatigue life prediction and reliability assessment of 316L stainless steel under variable multiaxial loading. In the proposed model, fatigue phenomenon is considered as a Markov process, and damage vector and reliability are defined on every plane. Any low cycle fatigue damage evaluating method can be included in the proposed model. The model enables calculation of statistical reliability and crack initiation direction under variable multiaxial loading, which are generally not available. In present study, a critical plane method proposed by Kandil et al., maximum tensile strain range, and von Mises equivalent strain range are used to calculate fatigue damage. When the critical plane method is chosen, the effect of multiple critical planes is also included in the proposed model. Maximum tensile strain and von Mises strain methods are used for the demonstration of the generality of the proposed model. The material properties and the stochastic model parameters are obtained from uniaxial tests only. The stochastic model made of the parameters obtained from the uniaxial tests is applied to the life prediction and reliability assessment of 316L stainless steel under variable multiaxial loading. The predicted results show good accordance with experimental results.

  • PDF

A Study on the Analysis of Stochastic Nonlinear Dynamic System (확률적 비선형 동적계의 해석에 관한 연구)

  • 남성현;김호룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.697-704
    • /
    • 1995
  • The dynamic characteristics of a system can be critically influenced by system uncertainty, so the dynamic system must be analyzed stochastically in consideration of system uncertainty. This study presents the stochastic model of a nonlinear dynamic system with uncertain parameters under nonstationary stochastic inputs. And this stochastic system is analyzed by a new stochastic process closure method and moment equation method. The first moment equation is numerically evaluated by Runge-Kutta method and the second moment equation is numerically evaluated by stochastic process closure method, 4th cumulant neglect closure method and Runge-Kutta method. But the first and the second moment equations are coupled each other, so this equations are approximately evaluated by a iterative method. Finally the accuracy of the present method is verified by Monte Carlo simulation.

A Study on the Analysis of Stochastic Dynamic System (확률적 동적계의 해석에 관한 연구)

  • Nam, S.H.;Kim, H.R.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.4
    • /
    • pp.127-134
    • /
    • 1995
  • The dynamic characteristics of a system can be critically influenced by system uncertainty, so the dynamic system must be analyzed stochastically in consideration of system uncertainty. This study presents a generalized stochastic model of dynamic system subjected to bot external and parametric nonstationary stochastic input. And this stochastic system is analyzed by a new stochastic process closure method and moment equation method. The first moment equation is numerically evaluated by Runge-Kutta method. But the second moment equation is founded to constitute an infinite coupled set of differential equations, so this equations are numerically evaluated by cumulant neglect closure method and Runge-Kutta method. Finally the accuracy of the present method is verified by Monte Carlo simulation.

  • PDF

STOCHASTIC GRADIENT METHODS FOR L2-WASSERSTEIN LEAST SQUARES PROBLEM OF GAUSSIAN MEASURES

  • YUN, SANGWOON;SUN, XIANG;CHOI, JUNG-IL
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.4
    • /
    • pp.162-172
    • /
    • 2021
  • This paper proposes stochastic methods to find an approximate solution for the L2-Wasserstein least squares problem of Gaussian measures. The variable for the problem is in a set of positive definite matrices. The first proposed stochastic method is a type of classical stochastic gradient methods combined with projection and the second one is a type of variance reduced methods with projection. Their global convergence are analyzed by using the framework of proximal stochastic gradient methods. The convergence of the classical stochastic gradient method combined with projection is established by using diminishing learning rate rule in which the learning rate decreases as the epoch increases but that of the variance reduced method with projection can be established by using constant learning rate. The numerical results show that the present algorithms with a proper learning rate outperforms a gradient projection method.

The Stochastic Finite Element Analysis and Reliability Analysis of the Cable Stayed Bridge Considered to Correlation of the Random Variable (확률변수의 상관성을 고려한 사장교의 확률유한요소해석 및 신뢰성해석)

  • Han, Sung Ho;Shin, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.21-33
    • /
    • 2006
  • The reliability analysis can be conducted more effectively by formulating the stochastic finite element method suitable for the reliability theory about the cable stayed bridge. After conducting the initial equilibrium analysis of the cable stayed bridge, the program which can conduct the linear and nonlinear stochastic finite element analysis using the perturbation method and the reliability analysis considered to the correlation of the random variable is developed. Using the results of this program about the cable stayed bridge, the characteristic of the node displacement, element force and cable tension according to the correlation of the random variable is investigated quantitatively. Also the reliability index and the failure probability are examined by the compounding the correlation of the random variable.

Stochastic finite element analysis of plate structures by weighted integral method

  • Choi, Chang-Koon;Noh, Hyuk-Chun
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.703-715
    • /
    • 1996
  • In stochastic analysis, the randomness of the structural parameters is taken into consideration and the response variability is obtained in addition to the conventional (mean) response. In the present paper the structural response variability of plate structure is calculated using the weighted integral method and is compared with the results obtained by different methods. The stochastic field is assumed to be normally distributed and to have the homogeneity. The decomposition of strain-displacement matrix enabled us to extend the formulation to the stochastic analysis with the quadratic elements in the weighted integral method. A new auto-correlation function is derived considering the uncertainty of plate thickness. The results obtained in the numerical examples by two different methods, i.e., weighted integral method and Monte Carlo simulation, are in a close agreement. In the case of the variable plate thickness, the obtained results are in good agreement with those of Lawrence and Monte Carlo simulation.