• Title/Summary/Keyword: Stochastic trend

Search Result 65, Processing Time 0.029 seconds

Sectoral Price Divergence between Korea and Japan

  • Moon, Seongman
    • East Asian Economic Review
    • /
    • v.20 no.4
    • /
    • pp.493-517
    • /
    • 2016
  • This paper examines the persistent properties of 12 sectoral relative prices between Korea and Japan obtained following the Classification of Individual Consumption according to Purpose (COICOP) over the period of 1985-2016. Applying a new econometric method developed by Pesaran which controls for the cross-section dependence in a panel, we are not able to reject the hypothesis that the sectoral real exchange rates contain a common stochastic trend. On the other hand, the well-known panel unit root tests such as the IPS and LLC tests widely used by previous studies strongly reject the unit root hypothesis. Since the error term of the regression for our panel exhibits significant cross-section dependence, these opposite results justify that the use of the new econometric method is appropriate.

The research on daily temperature using continuous AR model (일별 온도의 연속형 자기회귀모형 연구 - 6개 광역시를 중심으로 -)

  • Kim, Ji Young;Jeong, Kiho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.155-167
    • /
    • 2014
  • This study uses a continuous autoregressive (CAR) model to analyze daily average temperature in six Korean metropolitan cities. Data period is Jan. 1, 1954 to Dec. 31, 2010 covering 57 years. Using a relative long time series reveals that the linear time trend components are all statistically significant in the six cities, which was not shown in previous studies. Particularly the plus sign of its coefficient implies the effect on Korea of the global warming. Unit-root test results are that the temperature time series are stationary without unit-root. It turns out that CAR(3) is suitable for stochastic component of the daily temperature. Since developing suitable continuous stochastic model of the underlying weather related variables is crucial in pricing the weather derivatives, the results in this study will likely prove useful in further future studies on pricing weather derivatives.

Modal testing and finite element model calibration of an arch type steel footbridge

  • Bayraktar, Alemdar;Altunisk, Ahmet Can;Sevim, Baris;Turker, Temel
    • Steel and Composite Structures
    • /
    • v.7 no.6
    • /
    • pp.487-502
    • /
    • 2007
  • In recent decades there has been a trend towards improved mechanical characteristics of materials used in footbridge construction. It has enabled engineers to design lighter, slender and more aesthetic structures. As a result of these construction trends, many footbridges have become more susceptible to vibrations when subjected to dynamic loads. In addition to this, some inherit modelling uncertainties related to a lack of information on the as-built structure, such as boundary conditions, material properties, and the effects of non-structural elements make difficult to evaluate modal properties of footbridges, analytically. For these purposes, modal testing of footbridges is used to rectify these problems after construction. This paper describes an arch type steel footbridge, its analytical modelling, modal testing and finite element model calibration. A modern steel footbridge which has arch type structural system and located on the Karadeniz coast road in Trabzon, Turkey is selected as an application. An analytical modal analysis is performed on the developed 3D finite element model of footbridge to provide the analytical frequencies and mode shapes. The field ambient vibration tests on the footbridge deck under natural excitation such as human walking and traffic loads are conducted. The output-only modal parameter identification is carried out by using the peak picking of the average normalized power spectral densities in the frequency domain and stochastic subspace identification in the time domain, and dynamic characteristics such as natural frequencies mode shapes and damping ratios are determined. The finite element model of footbridge is calibrated to minimize the differences between analytically and experimentally estimated modal properties by changing some uncertain modelling parameters such as material properties. At the end of the study, maximum differences in the natural frequencies are reduced from 22% to only %5 and good agreement is found between analytical and experimental dynamic characteristics such as natural frequencies, mode shapes by model calibration.

Modeling and SINR Analysis of Dual Connectivity in Downlink Heterogeneous Cellular Networks

  • Wang, Xianling;Xiao, Min;Zhang, Hongyi;Song, Sida
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5301-5323
    • /
    • 2017
  • Small cell deployment offers a low-cost solution for the boosted traffic demand in heterogeneous cellular networks (HCNs). Besides improved spatial spectrum efficiency and energy efficiency, future HCNs are also featured with the trend of network architecture convergence and feasibility for flexible mobile applications. To achieve these goals, dual connectivity (DC) is playing a more and more important role to support control/user-plane splitting, which enables maintaining fixed control channel connections for reliability. In this paper, we develop a tractable framework for the downlink SINR analysis of DC assisted HCN. Based on stochastic geometry model, the data-control joint coverage probabilities under multi-frequency and single-frequency tiering are derived, which involve quick integrals and admit simple closed-forms in special cases. Monte Carlo simulations confirm the accuracy of the expressions. It is observed that the increase in mobility robustness of DC is at the price of control channel SINR degradation. This degradation severely worsens the joint coverage performance under single-frequency tiering, proving multi-frequency tiering a more feasible networking scheme to utilize the advantage of DC effectively. Moreover, the joint coverage probability can be maximized by adjusting the density ratio of small cell and macro cell eNBs under multi-frequency tiering, though changing cell association bias has little impact on the level of the maximal coverage performance.

Research on the Efficiency and Influencing Factors of Korea's Foreign Direct Investment in RCEP Partners

  • Xin-Yue Wang;Xi Chen;Li Chen;Qing Wang
    • Journal of Korea Trade
    • /
    • v.26 no.4
    • /
    • pp.83-97
    • /
    • 2022
  • Purpose - In this paper, we, taking South Korea's foreign direct investment in RCEP partners as an example, will examine its investment efficiency in these countries and analyze the main influencing factors, making suggestions for further liberalizing and facilitating its investment in and even for promoting its trade and economic cooperation with them. Design/methodology - In this study, we look at the panel data of South Korea and the other 13 RCEP countries (Brunei excluded) from 2000 to 2019 and apply the stochastic frontier analysis to measure its foreign direct investment efficiency and explore the influencing factors in RCEP countries. We examine the investment potential of South Korea in these places. Findings - We find that South Korea's average investment efficiency in RCEP countries reached 0.62, indicating large investment potential. We also find that its investment efficiency in RCEP partners was heterogeneous. Our study reveals that South Korea's foreign direct investment is significantly positively correlated with the market size and population of the two countries, as well as with whether the host country has a coastline and rich natural resources, while negatively with geographic distance. It shows that free trade agreements, economic freedom, and regulatory quality play significant roles in improving investment efficiency. Originality/value - Through theoretical and empirical analysis, we deal with the efficiency and influencing factors of South Korea's direct investment in RCEP partners, proposing new drivers for facilitating its trade and investment in these countries and comprehensively evaluating the efficiency and revealing the trend of its FDI in these countries. In this paper, we put forward a solid theoretical basis for empirical analysis of the future economic and trade development between South Korea and its RCEP partners and give objective insights for further improving its foreign direct investment efficiency and tapping its investment potential.

Stochastic Seepage Analysis of Dam (확률론적 댐 침투거동 해석)

  • Cho Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.73-83
    • /
    • 2006
  • Seepage analysis through unsaturated zone based on the theory of unsaturated flow is commonly performed to evaluate dam safety. However, the concepts of unsaturated soil behavior have not been transferred into the hands of practicing geotechnical engineers since the problems involving unsaturated soils often have the appearances of being extremely complex. There is variability and uncertainty associated with the unsaturated hydraulic properties that in turn will lead to variability in predicting unsaturated soil behavior such as seepage rate and the pore water pressure distribution. In this paper, measurements of the soil-water characteristic curve and saturated hydraulic conductivity for the core material of dam were conducted. Then, finite element stochastic analysis was used to capture the effect of unsaturated hydraulic properties on the seepage behavior of dam. It is observed that the amount of seepage increases, as the values of unsaturated soil parameters a and n increase. The values of m and p showed opposite trend.

Seismic safety assessment of eynel highway steel bridge using ambient vibration measurements

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Ozdemir, Hasan
    • Smart Structures and Systems
    • /
    • v.10 no.2
    • /
    • pp.131-154
    • /
    • 2012
  • In this paper, it is aimed to determine the seismic behaviour of highway bridges by nondestructive testing using ambient vibration measurements. Eynel Highway Bridge which has arch type structural system with a total length of 216 m and located in the Ayvaclk county of Samsun, Turkey is selected as an application. The bridge connects the villages which are separated with Suat U$\breve{g}$urlu Dam Lake. A three dimensional finite element model is first established for a highway bridge using project drawings and an analytical modal analysis is then performed to generate natural frequencies and mode shapes in the three orthogonal directions. The ambient vibration measurements are carried out on the bridge deck under natural excitation such as traffic, human walking and wind loads using Operational Modal Analysis. Sensitive seismic accelerometers are used to collect signals obtained from the experimental tests. To obtain experimental dynamic characteristics, two output-only system identification techniques are employed namely, Enhanced Frequency Domain Decomposition technique in the frequency domain and Stochastic Subspace Identification technique in time domain. Analytical and experimental dynamic characteristic are compared with each other and finite element model of the bridge is updated by changing of boundary conditions to reduce the differences between the results. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of highway bridges. After finite element model updating, maximum differences between the natural frequencies are reduced averagely from 23% to 3%. The updated finite element model reflects the dynamic characteristics of the bridge better, and it can be used to predict the dynamic response under complex external forces. It is also helpful for further damage identification and health condition monitoring. Analytical model of the bridge before and after model updating is analyzed using 1992 Erzincan earthquake record to determine the seismic behaviour. It can be seen from the analysis results that displacements increase by the height of bridge columns and along to middle point of the deck and main arches. Bending moments have an increasing trend along to first and last 50 m and have a decreasing trend long to the middle of the main arches.

Future Inflow Simulation Considering the Uncertainties of TFN Model and GCMs on Chungju Dam Basin (TFN 모형과 GCM의 불확실성을 고려한 충주댐 유역의 미래 유입량 모의)

  • Park, Jiyeon;Kwon, Ji-Hye;Kim, Taereem;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.2
    • /
    • pp.135-143
    • /
    • 2014
  • In this study, Chungju inflow was simulated for climate change considering the uncertainties of GCMs and a stochastic model. TFN (Transfer Function Noise) model and 4 different GCMs (CNRM, CSIRO, CONS, UKMO) based on IPCC AR4 A2 scenario were used. In order to evaluate uncertainty of TFN model, 100 cases of noises are applied to the TFN model. Thus, 400 cases of inflow results are simulated. Future inflows according to the GCMs show different rates of changes for the future 3 periods relative to the past 30-years reference period. As the results, the summer inflow shows increasing trend and the spring inflow shows decreasing trend based on AR4 A2 scenario.

Future Trend Impact Analysis Based on Adaptive Neuro-Fuzzy Inference System (ANFIS 접근방식에 의한 미래 트랜드 충격 분석)

  • Kim, Yong-Gil;Moon, Kyung-Il;Choi, Se-Ill
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.4
    • /
    • pp.499-505
    • /
    • 2015
  • Trend Impact Analysis(: TIA) is an advanced forecasting tool used in futures studies for identifying, understanding and analyzing the consequences of unprecedented events on future trends. An adaptive neuro-fuzzy inference system is a kind of artificial neural network that integrates both neural networks and fuzzy logic principles, It is considered to be a universal estimator. In this paper, we propose an advanced mechanism to generate more justifiable estimates to the probability of occurrence of an unprecedented event as a function of time with different degrees of severity using Adaptive Neuro-Fuzzy Inference System(: ANFIS). The key idea of the paper is to enhance the generic process of reasoning with fuzzy logic and neural network by adding the additional step of attributes simulation, as unprecedented events do not occur all of a sudden but rather their occurrence is affected by change in the values of a set of attributes. An ANFIS approach is used to identify the occurrence and severity of an event, depending on the values of its trigger attributes. The trigger attributes can be calculated by a stochastic dynamic model; then different scenarios are generated using Monte-Carlo simulation. To compare the proposed method, a simple simulation is provided concerning the impact of river basin drought on the annual flow of water into a lake.

Use of Space-time Autocorrelation Information in Time-series Temperature Mapping (시계열 기온 분포도 작성을 위한 시공간 자기상관성 정보의 결합)

  • Park, No-Wook;Jang, Dong-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.4
    • /
    • pp.432-442
    • /
    • 2011
  • Climatic variables such as temperature and precipitation tend to vary both in space and in time simultaneously. Thus, it is necessary to include space-time autocorrelation into conventional spatial interpolation methods for reliable time-series mapping. This paper introduces and applies space-time variogram modeling and space-time kriging to generate time-series temperature maps using hourly Automatic Weather System(AWS) temperature observation data for a one-month period. First, temperature observation data are decomposed into deterministic trend and stochastic residual components. For trend component modeling, elevation data which have reasonable correlation with temperature are used as secondary information to generate trend component with topographic effects. Then, space-time variograms of residual components are estimated and modelled by using a product-sum space-time variogram model to account for not only autocorrelation both in space and in time, but also their interactions. From a case study, space-time kriging outperforms both conventional space only ordinary kriging and regression-kriging, which indicates the importance of using space-time autocorrelation information as well as elevation data. It is expected that space-time kriging would be a useful tool when a space-poor but time-rich dataset is analyzed.

  • PDF