DOI QR코드

DOI QR Code

Future Inflow Simulation Considering the Uncertainties of TFN Model and GCMs on Chungju Dam Basin

TFN 모형과 GCM의 불확실성을 고려한 충주댐 유역의 미래 유입량 모의

  • Park, Jiyeon (Infrastructure Safety Research Institute, KISTEC) ;
  • Kwon, Ji-Hye (Infrastructure Safety Research Institute, KISTEC) ;
  • Kim, Taereem (School of Civil and Environmental Engineering, Yonsei Univ.) ;
  • Heo, Jun-Haeng (School of Civil and Environmental Engineering, Yonsei Univ.)
  • 박지연 (한국시설안전공단 시설안전연구소) ;
  • 권지혜 (한국시설안전공단 시설안전연구소) ;
  • 김태림 (연세대학교 대학원 토목공학과 통합과정) ;
  • 허준행 (연세대학교 사회환경시스템공학부 토목환경공학과)
  • Received : 2013.09.03
  • Accepted : 2014.01.02
  • Published : 2014.02.28

Abstract

In this study, Chungju inflow was simulated for climate change considering the uncertainties of GCMs and a stochastic model. TFN (Transfer Function Noise) model and 4 different GCMs (CNRM, CSIRO, CONS, UKMO) based on IPCC AR4 A2 scenario were used. In order to evaluate uncertainty of TFN model, 100 cases of noises are applied to the TFN model. Thus, 400 cases of inflow results are simulated. Future inflows according to the GCMs show different rates of changes for the future 3 periods relative to the past 30-years reference period. As the results, the summer inflow shows increasing trend and the spring inflow shows decreasing trend based on AR4 A2 scenario.

본 연구에서는 기후변화에 따른 충주댐 유입량을 모의하였으며 이때 발생되는 불확실성을 분석하였다. GCM별 불확실성을 고려하기 위해 IPCC AR4 A2 시나리오에 의한 4개의 GCM 강수량 결과를 추계학적 모형인 TFN 모형에 적용하였다. TFN 모형의 불확실성을 고려하기 위하여 정규분포를 따르는 100개의 잡음항을 생성하여 앙상블 유입량 시나리오를 생성하였고, 결과적으로 400개의 미래유입량 시나리오를 제시하였다. 분석결과 과거 30년과 비교하여 미래에는 다른 변화율을 보였으며, 모든 시나리오에서 전 기간에 걸쳐 연 유입량 증가 양상을 보였고 여름철의 유입량 증가, 봄철의 유입량 감소가 전망되었다.

Keywords

References

  1. Ahn, J.H., Yoo, C.S., and Yoon, Y.N. (2001). "An Analysis of Hydrologic Changes in Daechung Dam Basin using GCM Simulation Result due to Global Warming." Journal of Korea Water Resources Association, Vol. 34, No. 4, pp. 335-345.
  2. Arnell, N.W., and Reynard, N.S. (1996). "The Effects of Climate Change due to Global Warming on River Flows of Great Britain." Journal of Hydrology, Vol. 183, No. 3, pp. 397-424. https://doi.org/10.1016/0022-1694(95)02950-8
  3. Bae, D.H., Jung, I.W., and Chang, H. (2008). "Potential Changes in Korean Water Resources Estimated by High-Resolution Climate Simulation." Climate Research, Vol. 35, No. 3, pp. 213-226. https://doi.org/10.3354/cr00704
  4. Bae, D.H., Jung, I.W., Lee, B.J., and Lee, M.H. (2011). "Future Korean Water Resources Projection Considering Uncertainty of GCMs and Hydrological Models." Journal of Korea Water Resources Association, Vol. 44, No. 5, pp. 389-406. https://doi.org/10.3741/JKWRA.2011.44.5.389
  5. Beven, K., and Binley, A. (1992). "The Future of Distributed Models: Model Calibration and Uncertainty Prediction." Hydrological Processes, Vol. 6, No. 3, pp. 279-298. https://doi.org/10.1002/hyp.3360060305
  6. Box, G. E. P., and Cox, D.R. (1964). "An Analysis of Transformations." Journal of the Royal Statistical Society. Series. B, Vol. 26, No. 2, pp. 211-243.
  7. Box, G.E.P., Jenkins, G.M., and Reinsel, G.C. (1976). Time Series Analysis : Forecasting and Control, Prentice-Hall International, Inc.
  8. Fabbri, P., Gaetan, C., and Zangheri, P. (2011). "Transfer Function-noise Modelling of an Aquifer System in NE Italy." Hydrological Processes, Vol. 25, No. 2, pp. 194-260. https://doi.org/10.1002/hyp.7832
  9. Heo, J.H., Kim, K.D., and Cho, W.C. (1997). "Drought Analysis of Nakdong River basin Based in Multivariate Stochastic Models." Journal of Korea Water Resources Association, Vol. 30, No. 2, pp. 155-163.
  10. Honti, M., and Somlyody, L. (2009). "Stochastic water balance simulation for Lake Belaton (hungary) under climatic pressure." Water Science and Technology, Vol. 59, No. 3, pp. 453-459. https://doi.org/10.2166/wst.2009.886
  11. Jung, I.W. (2008). Climate Change Impact Assessments on Korean Water Resources using Hybrid Downscaling Technique. Ph.D. dissertation, Sejong University, pp. 98-121.
  12. Kang, K.S., and Heo, J.H. (2006). "Comparative Study on Method of Stochastic Modeling in Han River Basin." 2006 Korea Water Resources Conference, Jeju, Korea, pp. 669-673.
  13. Kim, B.S., Kim, H.S., and Seoh, B.H. (2007). "Impact of Climate Change on Water Resources in Yongdam Dam Basin, Korea." Stochastic Environmental Research and Risk Assessment, Vol. 21, No. 4, pp. 355-373. https://doi.org/10.1007/s00477-006-0070-5
  14. Kim, H.G., and Lee, M.S. (2005). Time Series Analysis of Economic and Financial Data, Kyungmoon Publishers.
  15. Kwon, J.H., and Heo, J.H. (2002). "Stochastic Modeling on Geum River Basin Monthly Inflows." 2002 Korea Water Resources Conference, Incheon, Korea, pp. 187-193.
  16. Salas, J.D., Delleur, J.W., YevJevich, V., and Lane, W.L. (1980). Applied Modeling of Hydrologic Time Series, Water Resources Publications, Littleton, Colorado.
  17. Snedecor, G.W., and Cochran, W.R. (1967). Statistical Methods, 6th ed., Iowa State University Press, Ames, Iowa
  18. Young, P. (1984). Recursive Estimation and Time Series Analysis, Springer, Berlin.

Cited by

  1. Assessing the Performance of CMIP5 GCMs for Various Climatic Elements and Indicators over the Southeast US vol.47, pp.11, 2014, https://doi.org/10.3741/JKWRA.2014.47.11.1039