• Title/Summary/Keyword: Stochastic lead times

Search Result 12, Processing Time 0.027 seconds

Stochastic Order Level Inventory System with Dependent Lead Times (제품인도기간에 함수인 확률적 주문수준 재고정책에 관한 연구)

  • Kim, Yeong-Min
    • Journal of Korean Society for Quality Management
    • /
    • v.14 no.1
    • /
    • pp.33-38
    • /
    • 1986
  • This paper deals with probabilistic order level inventory system which the quantity ordered at the end of the scheduling period is dependent on lead times. To find an optimal solution, pearson system of distributions is used to approximate the probability density function of the on-order quantity. An example is solved and sensitivity analysis is performed to examine the relation between lead times and the ordering quantity.

  • PDF

The Effect of (Q, r) Policy in Production-Inventory Systems

  • Kim, Joon-Seok;Jung, Uk
    • Management Science and Financial Engineering
    • /
    • v.15 no.1
    • /
    • pp.33-49
    • /
    • 2009
  • We examine the effectiveness of the conventional (Q, r) model in managing production-inventory systems with finite capacity, stochastic demand, and stochastic order processing times. We show that, for systems with finite production capacity, order replenishment lead times are highly sensitive to loading and order quantity. Consequently, the choice of optimal order quantity and optimal reorder point can vary significantly from those obtained under the usual assumption of a load-independent lead time. More importantly, we show that for a given (Q, r) policy the conventional model can grossly under or over-estimate the actual cost of the policy. In cases where a setup time is associated with placing a production order, we show that the optimal (Q, r) policy derived from the conventional model can, in fact, be infeasible.

(s, S ) Inventory Models with Ordering Quantity Dependent Stochastic Lead Times (제품인도기간이 주문량에 의존하여 변화하는 (s, S) 재고모형)

  • 김홍배;양성민
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.11 no.17
    • /
    • pp.9-14
    • /
    • 1988
  • A (s, S) inventory policy is studied for a continuous inventory model in which lead times are dependent on the ordering quantity. The model assumes that at most one order is outstanding and demands occur in a compound poison process. The steady-state probability distributions of the inventory levels are derived so as to determine the long-run expected average cost. And the computational procedure is presented.

  • PDF

Development of a Stochastic Inventory System Model

  • Sung, Chang-Sup
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.5 no.1
    • /
    • pp.59-66
    • /
    • 1979
  • The objective of this paper is to develop a stochastic inventory system model under the so-called continuous-review policy with a Poisson one-at-a-time demand process, iid customer inter-arrival times {Xi}, backorders allowed, and constant procurement lead time $\gamma$. The distributions of the so-called inventory position process {$IP_{(t-r)}$} and lead time demand process {$D_{(t-r,t)}$} are formulated in terms of cumulative demand by time t, {$N_t$}. Then, for the long-run expected average annual inventory cost expression, the "ensemble" average is estimated, where the cost variations for stock ordering, holding and backorders are considered stationary.

  • PDF

The Value of a Warehouse : Whether to have a warehouse or not (물류센터의 경제성 평가를 위한 수리모델 및 고려요소에 관한 제언)

  • 김종대;강경식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.34
    • /
    • pp.193-204
    • /
    • 1995
  • Many studies show that the value of the warehouse is good. However, studies explicitly mention the tradeoff between costs of operating the warehouse and benefits from the warehouse. Also, it is important to know when the benefits overcome the costs. We study a one-warehouse/N-retailer(s,Q) distribution system with stochastic lead times in order to answer two questions: "What are the optimal policies of the system that minimizes total system costs\ulcorner" and given the optimal policies, "Is the value of the warehouse always good\ulcorner" We use an analytical model for answering the questions. We find that the optimal policies are different from those with deterministic lead times. In fact it is reverse. We alse find the existence of the breakeven point beyond which the benefits starts overcomming the costs. And, we show that one of the breakeven points is the mean ratio of a supplier's lead time to transportation lead time between the warehouse and the retailer. Finally, we show that the breakeven point is sensitive to the ratio of holding costs of the warehouse and the retailer and it is also sensitive to the unit backorder costs at the retailer.sts at the retailer.

  • PDF

Optimal Policy for (s, S) Inventory System Characterized by Renewal Arrival Process of Demand through Simulation Sensitivity Analysis (수요가 재생 도착과정을 따르는 (s, S) 재고 시스템에서 시뮬레이션 민감도 분석을 이용한 최적 전략)

  • 권치명
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.3
    • /
    • pp.31-40
    • /
    • 2003
  • This paper studies an optimal policy for a certain class of (s, S) inventory control systems, where the demands are characterized by the renewal arrival process. To minimize the average cost over a simulation period, we apply a stochastic optimization algorithm which uses the gradients of parameters, s and S. We obtain the gradients of objective function with respect to ordering amount S and reorder point s via a combined perturbation method. This method uses the infinitesimal perturbation analysis and the smoothed perturbation analysis alternatively according to occurrences of ordering event changes. The optimal estimates of s and S from our simulation results are quite accurate. We consider that this may be due to the estimated gradients of little noise from the regenerative system simulation, and their effect on search procedure when we apply the stochastic optimization algorithm. The directions for future study stemming from this research pertain to extension to the more general inventory system with regard to demand distribution, backlogging policy, lead time, and inter-arrival times of demands. Another direction involves the efficiency of stochastic optimization algorithm related to searching procedure for an improving point of (s, S).

  • PDF

ANALYSIS OF TWO COMMODITY MARKOVIAN INVENTORY SYSTEM WITH LEAD TIME

  • Anbazhagan, N.;Arivarignan, G.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.519-530
    • /
    • 2001
  • A two commodity continuous review inventory system with independent Poisson processes for the demands is considered in this paper. The maximum inventory level for the i-th commodity fixed as $S_i$(i = 1,2). The net inventory level at time t for the i-th commodity is denoted by $I_i(t),\;i\;=\;1,2$. If the total net inventory level $I(t)\;=\;I_1(t)+I_2(t)$ drops to a prefixed level s $[{\leq}\;\frac{({S_1}-2}{2}\;or\;\frac{({S_2}-2}{2}]$, an order will be placed for $(S_{i}-s)$ units of i-th commodity(i=1,2). The probability distribution for inventory level and mean reorders and shortage rates in the steady state are computed. Numerical illustrations of the results are also provided.

An Inventory Problem with Lead Time Proportional to Lot Size and Space Constraint (로트크기에 비례하는 리드타임과 공간 제약을 고려한 재고관리 정책)

  • Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.109-116
    • /
    • 2015
  • This paper is concerned with the single vendor single buyer integrated production inventory problem. To make this problem more practical, space restriction and lead time proportional to lot size are considered. Since the space for the inventory is limited in most practical inventory system, the space restriction for the inventory of a vendor and a buyer is considered. As product's quantity to be manufactured by the vendor is increased, the lead time for the order is usually increased. Therefore, lead time for the product is proportional to the order quantity by the buyer. Demand is assumed to be stochastic and the continuous review inventory policy is used by the buyer. If the buyer places an order, then the vendor will start to manufacture products and the products will be transferred to the buyer with equal shipments many times. The mathematical formulation with space restriction for the inventory of a vendor and a buyer is suggested in this paper. This problem is constrained nonlinear integer programming problem. Order quantity, reorder points for the buyer, and the number of shipments are required to be determined. A Lagrangian relaxation approach, a popular solution method for constrained problem, is developed to find lower bound of this problem. Since a Lagrangian relaxation approach cannot guarantee the feasible solution, the solution method based on the Lagrangian relaxation approach is proposed to provide with a good feasible solution. Total costs by the proposed method are pretty close to those by the Lagrangian relaxation approach. Sensitivity analysis for space restriction for the vendor and the buyer is done to figure out the relationships between parameters.

Numerical framework for stress cycle assessment of cables under vortex shedding excitations

  • Ruiz, Rafael O.;Loyola, Luis;Beltran, Juan F.
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.225-238
    • /
    • 2019
  • In this paper a novel and efficient computational framework to estimate the stress range versus number of cycles curves experienced by a cable due to external excitations (e.g., seismic excitations, traffic and wind-induced vibrations, among others) is proposed. This study is limited to the wind-cable interaction governed by the Vortex Shedding mechanism which mainly rules cables vibrations at low amplitudes that may lead to their failure due to bending fatigue damage. The algorithm relies on a stochastic approach to account for the uncertainties in the cable properties, initial conditions, damping, and wind excitation which are the variables that govern the wind-induced vibration phenomena in cables. These uncertainties are propagated adopting Monte Carlo simulations and the concept of importance sampling, which is used to reduce significantly the computational costs when new scenarios with different probabilistic models for the uncertainties are evaluated. A high fidelity cable model is also proposed, capturing the effect of its internal wires distribution and helix angles on the cables stress. Simulation results on a 15 mm diameter high-strength steel strand reveal that not accounting for the initial conditions uncertainties or using a coarse wind speed discretization lead to an underestimation of the stress range experienced by the cable. In addition, parametric studies illustrate the computational efficiency of the algorithm at estimating new scenarios with new probabilistic models, running 3000 times faster than the base case.

Probability Distribution of Project Completion Times in Simulation based Scheduling (시뮬레이션 일정기법;최종공사기간의 확률 통계적 특성 추정)

  • Lee, Dong-Eun;Kim, Ryul-Hee
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.327-330
    • /
    • 2007
  • This paper verifies that the normality assumption that the simulation output data, Project Completion Times (PCTs), follow normal distribution is not always acceptable and the existing belief may lead to misleading results. A risk quantification method, which measures the effect caused by the assumption, relative to the probability distribution of PCTs is implemented as an algorithm in MATLAB. To validate the reliability of the quantification, several series of simulation experiments have been carried out to analyze a set of simulation output data which are obtained from different type of Probability Distribution Function (PDF) assigned to activities'duration in a network. The method facilitates to find the effect of PDF type and its parameters. The procedure necessary for performing the risk quantification method is described in detail along with the findings. This paper contributes to improving the reliability of simulation based scheduling method, as well as increasing the accuracy of analysis results.

  • PDF