• 제목/요약/키워드: Stochastic integral

검색결과 100건 처리시간 0.039초

ON MARTINGALE PROPERTY OF THE STOCHASTIC INTEGRAL EQUATIONS

  • KIM, WEONBAE
    • Korean Journal of Mathematics
    • /
    • 제23권3호
    • /
    • pp.491-502
    • /
    • 2015
  • A martingale is a mathematical model for a fair wager and the modern theory of martingales plays a very important and useful role in the study of the stochastic fields. This paper is devoted to investigate a martingale and a non-martingale on the several stochastic integral or differential equations. Specially, we show that whether the stochastic integral equation involving a standard Wiener process with the associated filtration is or not a martingale.

ON STOCHASTIC EVOLUTION EQUATIONS WITH STATE-DEPENDENT DIFFUSION TERMS

  • Kim, Jai-Heui;Song, Jung-Hoon
    • 대한수학회지
    • /
    • 제34권4호
    • /
    • pp.1019-1028
    • /
    • 1997
  • The integral solution for a deterministic evolution equation was introduced by Benilan. Similarly, in this paper, we define the integral solution for a stochastic evolution equation with a state-dependent diffusion term and prove that there exists a unique integral solution of the stochastic evolution euation under some conditions for the coefficients. Moreover we prove that this solution is a unique strong solution.

  • PDF

Stochastic finite element analysis of plate structures by weighted integral method

  • Choi, Chang-Koon;Noh, Hyuk-Chun
    • Structural Engineering and Mechanics
    • /
    • 제4권6호
    • /
    • pp.703-715
    • /
    • 1996
  • In stochastic analysis, the randomness of the structural parameters is taken into consideration and the response variability is obtained in addition to the conventional (mean) response. In the present paper the structural response variability of plate structure is calculated using the weighted integral method and is compared with the results obtained by different methods. The stochastic field is assumed to be normally distributed and to have the homogeneity. The decomposition of strain-displacement matrix enabled us to extend the formulation to the stochastic analysis with the quadratic elements in the weighted integral method. A new auto-correlation function is derived considering the uncertainty of plate thickness. The results obtained in the numerical examples by two different methods, i.e., weighted integral method and Monte Carlo simulation, are in a close agreement. In the case of the variable plate thickness, the obtained results are in good agreement with those of Lawrence and Monte Carlo simulation.

STOCHASTIC CALCULUS FOR BANACH SPACE VALUED REGULAR STOCHASTIC PROCESSES

  • Choi, Byoung Jin;Choi, Jin Pil;Ji, Un Cig
    • 충청수학회지
    • /
    • 제24권1호
    • /
    • pp.45-57
    • /
    • 2011
  • We study the stochastic integral of an operator valued process against with a Banach space valued regular process. We establish the existence and uniqueness of solution of the stochastic differential equation for a Banach space valued regular process under the certain conditions. As an application of it, we study a noncommutative stochastic differential equation.

고차의 추계장 함수와 이를 이용한 비통계학적 추계론적 유한요소해석 (Non-statistical Stochastic Finite Element Method Employing Higher Order Stochastic Field Function)

  • 노혁천
    • 대한토목학회논문집
    • /
    • 제26권2A호
    • /
    • pp.383-390
    • /
    • 2006
  • 본 연구에서는 급수전개를 이용한 추계론적 유한요소해석법의 개선을 위한 등가몬테카를로 추계장함수를 제안하고 1차 Taylor전개를 이용한 추계론적 유한요소해석법인 가중적분법에 적용하였다. 일반적으로 1차 Taylor전개를 이용하는 수치해석법에서의 응답변화도는 고려하고 있는 추계장의 분산계수에 대하여 선형거동을 보인다. 그러나 몬테카를로 해석의 경우 추계장 분산계수에 대하여 비선형 거동을 나타낸다. 이는 급수전개법의 1차 Taylor전개에 따른 선형특성에 기인한다. 따라서, 가중적분법에서 사용되는 Taylor전개된 변위벡터와 몬테카를로 해석에서의 변위벡터를 비교하고 이들 두 변위벡터 사이에 상호 불일치 하는 점을 고찰하여 몬테카를로 해석에서의 변위벡터와 등가의 변위벡터를 구성하고 이를 가중적분법에 적용하였다. 제안한 등가몬테카를로 추계장은 본래의 추계장 함수에 대한 고차함수로 주어진다. 평면구조에 대한 수치해석을 통하여 제안한 등가몬테카를로 추계장을 이용한 정식화의 타당성을 고찰하였다 새로운 정식화는 기존의 l차 가중적분법을 위한 정식화 과정과 유사하게 수행할 수 있었다.

ESTIMATION OF NON-INTEGRAL AND INTEGRAL QUADRATIC FUNCTIONS IN LINEAR STOCHASTIC DIFFERENTIAL SYSTEMS

  • Song, IL Young;Shin, Vladimir;Choi, Won
    • Korean Journal of Mathematics
    • /
    • 제25권1호
    • /
    • pp.45-60
    • /
    • 2017
  • This paper focuses on estimation of an non-integral quadratic function (NIQF) and integral quadratic function (IQF) of a random signal in dynamic system described by a linear stochastic differential equation. The quadratic form of an unobservable signal indicates useful information of a signal for control. The optimal (in mean square sense) and suboptimal estimates of NIQF and IQF represent a function of the Kalman estimate and its error covariance. The proposed estimation algorithms have a closed-form estimation procedure. The obtained estimates are studied in detail, including derivation of the exact formulas and differential equations for mean square errors. The results we demonstrate on practical example of a power of signal, and comparison analysis between optimal and suboptimal estimators is presented.

STOCHASTIC INTEGRAL OF PROCESSES TAKING VALUES OF GENERALIZED OPERATORS

  • CHOI, BYOUNG JIN;CHOI, JIN PIL;JI, UN CIG
    • Journal of applied mathematics & informatics
    • /
    • 제34권1_2호
    • /
    • pp.167-178
    • /
    • 2016
  • In this paper, we study the stochastic integral of processes taking values of generalized operators based on a triple E ⊂ H ⊂ E, where H is a Hilbert space, E is a countable Hilbert space and E is the strong dual space of E. For our purpose, we study E-valued Wiener processes and then introduce the stochastic integral of L(E, F)-valued process with respect to an E-valued Wiener process, where F is the strong dual space of another countable Hilbert space F.

SOLVABILITY OF GENERAL BACKWARD STOCHASTIC VOLTERRA INTEGRAL EQUATIONS

  • Shi, Yufeng;Wang, Tianxiao
    • 대한수학회지
    • /
    • 제49권6호
    • /
    • pp.1301-1321
    • /
    • 2012
  • In this paper we study the unique solvability of backward stochastic Volterra integral equations (BSVIEs in short), in terms of both the adapted M-solutions introduced in [19] and the adapted solutions via a new method. A general existence and uniqueness of adapted M-solutions is proved under non-Lipschitz conditions by virtue of a briefer argument than the ones in [13] and [19], which modifies and extends the results in [13] and [19] respectively. For the adapted solutions, the unique solvability of BSVIEs under more general stochastic non-Lipschitz conditions is shown, which improves and generalizes the results in [7], [14] and [15].

A STATISTICS INTERPOLATION METHOD: LINEAR PREDICTION IN A STOCK PRICE PROCESS

  • Choi, U-Jin
    • 대한수학회지
    • /
    • 제38권3호
    • /
    • pp.657-667
    • /
    • 2001
  • We propose a statistical interpolation approximate solution for a nonlinear stochastic integral equation of a stock price process. The proposed method has the order O(h$^2$) of local error under the weaker conditions of $\mu$ and $\sigma$ than those of Milstein' scheme.

  • PDF

ON THE CONTINUITY AND GAUSSIAN CHAOS OF SELF-SIMILAR PROCESSES

  • Kim, Joo-Mok
    • 충청수학회지
    • /
    • 제12권1호
    • /
    • pp.133-146
    • /
    • 1999
  • Let {X(t), $t{\geq}0$} be a stochastic integral process represented by stable random measure or multiple Ito-Wiener integrals. Under some conditions, we prove the continuity and self-similarity of these stochastic integral processes. As an application, we get Gaussian chaos which has some shift continuous function.

  • PDF