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A STATISTICAL INTERPOLATION METHOD: LINEAR
PREDICTION IN A STOCK PRICE PROCESS

U Jiny CHor

ABSTRACT. We propose a statistical interpolation approximate so-
lution for a nonlinear stochastic integral equation of a stock price
process. The proposed method has the order O(h?) of local error
under the weaker conditions of u and ¢ than those of Milstein’s
scheme.

1. Introduction

The uncertainty is represented by a filtered probability space (£2, F,
F, P) on which is a one dimensional Brownian motions W. The filtration
F = {F;;t > 0} is the augmentation under P of the filtration generated
by W. We assume that F = Fp,t € [0,7T] or that the true state of
nature is completely determined by the sample path of W on [0, 1].

Throughout we fix a finite time horizon T" € (0, 00). We interpret the
o-field as representing the information available at time ¢ € [0, 7] and the
probability measure P as representing the agent’s common beliefs. All
the stochastic processes to appear in the sequel are progressively mea-
surable with respective to F and all equations, equalities or inequalities
involving variables are understood to hold P-a.s. It is assumed that
the price process of a security is strictly positive P-a.s. Let X; be the
price process of a security/asset at time ¢. The security of asset is risky
because of the presence of its diffusion term ¢. In valuing contingent
claims, it is convenient to represent the underlying state variables as a
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continuous-time diffusion process, saiisfying a nonlinear stochastic dif-
ferential equations;

dXt = ,u(t, Xt)dt + O’(t, Xt)th,
Xp is given.

(1.1)

Examples include the interest rate models of Cox, Ingersoll and Ross|[2]
and many others [5, 6, 3]. Here W; is a standard Brownian motion
and p and o are the drift and diffusion functions of the price process
X respectively. The initial value X is assumed to be independent
of W; and E|Xy|*> < oo . It is further assumed that the functions
i#,0:[0,7] x R — R are Borel measurable and satisfy a Lipschitz con-
diticn and a linear growth condition:

(1.2) 17, 2) — fE, )l < Cllz -y,

(1.3) 12 < O+ [lzf).

Then it is well-known that the equation (1.1) has a unique solution X
[7, 11, 13]. Throughout we further assumes that u,o, u,, oy, 4s, 0 are
continuous and satisfy the growth condition (1.3).

The generalization to a multidimensional price process X; is avoided
only for simplicity. One of course wants to obtain the exact solution
X; of (1.1). However, this can be accomplished generally only for sim-
ple(linear) equations. Thus numerical methods for (1.1) is inevitable and
tremendously important in application sides. The common numerical
method employed include the binomial scheme, finite difference method,
Euler type iteration [12] and Monte Carlo simulation [8]. The binomial
schemes are most widely used in the finance community for valuation of
a wide variety of option models, due primarily to its ease of implemen-
tation and pedagogical appeal. The finite difference approach seeks dis-
cretization of the differential operators in the continuous Black-Scholes
models. Monte Carlo methods simulates the stochastic movement of the
price of securities/assets and provides a probabilistic solution. In most
case, the Monte Carlo simulation can be applied in quite a straightfor-
ward manner, even without a deep understanding of the nature of the
price model. Generally speaking each class of numerical methods has its
merits and limitations. Unlike [9, 1] and [10], we propose statistical in-
terpolation method for a nonlinear stochastic Volterra integral equation
appearing in various financial models [11, 13]. This paper is organized
as following . In section 2 statistical divided differences is discussed.
In section 3 the statistical linear interpolation method is presented and
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analyzed. The rate of convergence is obtained, which is higher than that .
of the classical Euler type iteration method.

2. Euler method and Statistical Divied Differences

Let [0,7] be a finite time horizon. consider a discretization 0 = #p <
t1 < -+ < t, = T of [0,7]. The analogue of Euler’s method is the
Euler-Maruyama scheme defined by

(2.1) Xo = X(0):=Xo .
Xip1 = Xi+ plte, Xi)(tre1 — te) + o{te, Xe) (Wi — Wi)
where Xk = X(tg), Wi = W(tk), k=012 ,n—1.

A corresponding continuous parameter process to (2.1) is given by
the linear interpolation,

Xi = Xi+ ulte, Xe)(t — t) + o (tx, Xe)(We — Wi)
X(tg-1) = Xi—

The following theorem is due to Maruyama[16|. Note that, in addition
to the Lipschitz and growth condition of  and ¢ in the second variable
which guarantee existence and uniqueness of the solution(strong) of the
equation (1,1), a modulus of continuity condition in the ¢ variable is
required to obtain the similar order of convergence as in the deterministic
case of Euler’s scheme.

(2.2)

THEOREM 2.1. (Maruyama [16]) Assume that

(A1) |plt,z) — p(t,y)| + |o(t,x) — a(t,y)] < Ki|z -yl
(A2) |u(t, )PP +lo(t,2)|* < Ka(|L + |z[*)
(A3) |u(s,z) — ult,z)|* +|o(s,z) — ot z)|* < Ka|s —t], s, €[0,T]

Then E(X;, — Xy )? = O(h?), k = 1,2,---,n t € [0,T], where h =
ty — tr_1 is the constant step-size.

It is clear that the linear interpolation process X, has the same order
of mean squence error, i.e. B(X; — X;)? < Ch?, t € [ty,ty, + h], where
h is the equidistant step-size and C is a constant independent of h. It is
a standard fact that the Euler-Maruyama scheme is numerically stable
in the mean square sense[16].

Assume that

(A4) E[p(t,X)] <o ; E[o?(t, X)] < oo
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We then need the following Ito’s isometry formula ;

E ( /0 t,u(s,Xs)dWs)z
2

E(fota(s,Xs)dWs) =f0tE[02(s,Xs)]ds.

t
- /0 E[i2(s, X,)]ds,

We now introduce the Newton form of a polynomial interpolation at
point to, t1,--- ,t,. Let p,(t) be the polynomial of degree n interpo-
lating f{z) at the points to, £, 11, - ,t,. We can express the Newton
form of p,(t) as follows ;

pa(t) =f(to) + flto, ta](t — to) + flto, 21, 2] (t — o) (t — t1)
n—1
+ ”.+f[t0:tla"' stn] ]:[(t_ t_j‘):
i=0
and the error function e(t) is given by

(23)  et) = f(t) = palt) = fltostr, - s tu, 8] [[ (2 = 1),

=0

where the divided differences fitp,t1,- - , %] is defined recurssively by

Il = fl)
fltts] = ﬂ%)_:_t%@
g = Ml Sl

For details for algebraic properties of the divided differences, see[l4].
To define statistical divided differences, assume that we are given by
the market data for the stock price process X; at the discrete time point
to,t1, - ,t,, which means that the data of the stock price in the market
are given by (tg, Xo}, (t1,X1),- -, (tn, Xn). Accordingly we have the
corresponding market data for the drift term w(t, X;) and the diffusion
term o(t, X;) respectively ;

Ju'(tO:XO), )u(tlaxl)a"' uu‘(tn:Xn);
J(tO:XO)y J(tlaXl)a"' aU(tn:Xn)-
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We then define the statistical divided differences as follows ; for k =
1,2,---,n
(2.3)

wlto; Xo| = u(te, Xo), wlto,t1; Xo, X1}

plto, - stes Xo, -+, Xl
ulty, - b X, Xe| — plto, -+ o te-13 Xo, -, X1
tr—1o

_ #lts Xa] — plte; Xo]
t1 — o

O'[tl; Xl] — O’[to; X()}
1 — 1

olte; Xo] = o(to, Xo), olto,t1; Xo, X1] =

olto, -tk Xo, -+ 5 Xi)

G[tl!"' 1tk;X11"' :Xk] _U[t(]:"' atk—l;XO}"' :Xk:—l]
tr —to

Accordingly the statistical interpolating polynomials df for ji,, and oy,
are defined by degree n

n k-1
fin®) =" ulto,- otk Xo,--+, Xe) [] (- 1)

n

k—1
an(t) = olto, - te; Xo,- -, Xe] [ —t5)
k=0 j=i

3. Construction of a linear statistical interpolation
prediction process

Let T € [0,00) be a finite time horizon. For simplicity we consider
the case in which the data (g, Xo) and (¢1, X7) are given. Let fi and & be
the linear interpolation of ¢ and ¢ at the points £y and ¢, respectively;

(3.1) At X2) = plto, Xo) + Altoy tas Xo, X1](t — to)
(3.2) a(t; X¢) = o(to, Xo) + O'[tg, t1; Xo, Xa1](t — o),
where
t1, X1) — plte, X,
lto, 15 X0, 0] = M ;3_;;( 0 X0)

a(t1, X1) — o(to, Xo)

ofto, t1; Xo, Xa] Pa—

f
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are the first order divided difference of p and o respectively. Note that
all processes p, 0, fi and & are progressively measurable with respective
to F,, t1 € (0,T]. Throughout it is assumed that u and o are L2-
processes;

BE|Xy* < 00, Eu(t,X:)? < 00, Eo(t,X;)? <oo, tel0,T).

For details of the algebraic properties of the divided differences, we refer
to [L4]. For t € (¢1, T}, we define a linear interpolating prediction process

Xt by

t |4
(3.3) Xe=X1 + / fis; X,)ds + / &(s; X)dW,.
t

{31 1

Then we have the following convergence result for X,. We are con-
cerned with only the local mean square error. Throughout the constant
C denotes a generic constant.

THEOREM 3.1. Assume that

(A1) |u(t,z) — plt,y)| + lo(t,z) —o(t,y)| < K|z -],
(A2) |u(t, @) + ot 2) < K2(1 + |zf?),
(A3) |ult,z) — u(s,z)2 + |ot,z) —o(s,2) P < K|t~ 5], 0<a<l.

Then we have

sup E|X; — X¢|2 <CR*, 0<ac<l
te(ty,ti+h)

Proof. We can rewrite the stochastic differential equation (1.1) as

t t
t

i1 1
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Subtraction (3.3) from the equation (3.4) gives
¢
X, -X, = f [(s, Xs) — fi(s, X,)|ds + [ [o(s, Xs) — (s, X,)|dW,
t
= / ,u[f,g, t1,8; X(), X1](S — to)(s — tl)ds

151

t
L f alto, tr, 85 Xo, X1J(s — to)(s — t1)dW,

31

= /t(ﬂ(s;xs) — p(t1; X1))ds — /: M(s —ty)ds

131 ' tl - t(]
+f (0'(5‘; Xs) - O’(tl;Xl))dWS

t

Lo(ty; X1) —olte; X

_/ o(ty; X1) — o(to; 0)(s—t1)dWs.
# t1 — 1o

Squaring both sides yields

xo- ke < of ([ s - e xoas)’

Eulty; Xh] — pfte; X 2
Ve = BRD
+ ft L olts; XaldW, )
oltr; X1] — olto; X, 2
o () R - aw )
Since E(X; — X,)? <C|t—s], 0<a<l, and
|uls; Xs] — ultr; X1 < lpfs; Xo] ~ pltn; Xl + lulte; Xo] — pltr; Xall
and so by (A.1) and (A.3), we see that

E(uls; Xo] — plts; X1])?

CE|(efs; Xs] — plt1; Xs])? + (usltn; Xs] — palt; Xa])?]
Cl(s — t1)* + E(X, — X1)?]

C(S - tl)a.

1t follows that

IAIACIA

B (fhtulss Xo) = plts X0llds) < Bl X0 -l XaPds [ ds

C(t —1)*2 < C(ty — to)t2.

A A

Similarly
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2
E t 11 t] ;X] — M t(];X() t E
( i1 (t]. tD) ( )

< szt E (#[tl;Xl] —ﬂ[to;Xo]) (s —t1)2ds - ftt ds
1 t1 —to 1

< Ot —to)* 2t — tp)*

< Clty —tg)>+2.

Following the same procedure as above we see that, by the It’s Isometry
formula,
2
E (fj ([ofs: X.) — oftr; Xal)duws
= [} E(o[s; X,] - ofti; Xa])?ds
CJ; s —t1)%ds < C(t — 1)t < Oty — )™,

A

and )
t ot X1]—olt0; Xo _

olty; Xq] — olte; X 2
= f:lE( s zj—tg[o 0]) (s — t1)%ds

< Ot — )2 [} (s — t1)%ds < C(ta — to)**!
Hence we have
B(X,— X)? <Ch*™, te(t,t1+h), hi=ti—t.
This completes the proof. O

Now we consider a statistical linear prediction of X;. Let us define
)Z't, as follows;
(3.5)~
X, = X + plto, XoJAt + plto, tr; Xo, X1](b1 — to) O
+0’[t0,t1}AWt + O’[to, ti; Xg,Xl](tl — to)AVVt,

where At =t —t; and AW, = W, — Wy, te€ (t1,t1 +h).

Note that X; is obtained by discretization of ﬁ 1{s; Xs)ds and
f; 6(s; Xs)dWs. Clearly X, is a L2-process i.e. B|X¢|? <

LEMMA 1. Assume (A.1), (A.2) and (A.3). Then

sup E(X, — X% < Ch*tL.
i <t<t1+h
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Proof. Write X} and X’t as

t
(3.6) X = X, + f
tr

t

ﬂ(s,Xs)ds—f—/ G(s, Xs)dWs,
t

X} =Xy + ,u[tg; Xo]At + u[to, t1; Xo, X1](t1 — to) 0t
+O’[t0, XU]AVVt + O'[fg, ty; Xg,Xl](tl — to) AW,

Subtraction (3.7} from (3.6) yields

(3.7)

t t
X —X; ﬂ/ ﬂ[to,tl;Xo,Xl](S-—tl)ds-i-/ U[to,tl;Xo,Xl](S—tl)dWS.
t t1

1

Squaring both sides yields

. - t 2
- X < 2[(f lto, s Xo, Xi](s — t1)ds)
t1

+ (fta[to,tl;Xo,Xl](S - tl)dwf’)z]

t1

Note that by (A.3)

‘ t £ X1) — ulto: 2
Ef plto, t1; Xo, X1]%ds = fE[#( 1; X1) #[to,Xo}] de
2 t1 . t1 — 1o

< C / (t1 — t)* 2ds < Ch® 1,
t1

According to Hélder’s inequality,

i 2
(| stos 1 X0, (s - e )
[4
t

1
t
S /E}L[to,tl;XO,XIPds/(S—tl)zds
< C.ft;la+2_ b

By Ito isometry formula and (A.3)

4 2
E (/ O'[t(),tl‘,Xg,Xl](S - tl)dws)
4
i

1

Eolto, t1; Xo, X112(s — t;)%ds
i1

ft . (g[ti; Xi] — afte; XO])Z (s —t1)2ds

th—1o
< Cha+1_
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This implies that

sup E|X} - X,)? < chott,
t1<t<t;+h

which completes the proof. O

THEOREM 3.2. Assume (A.1), (A.2) and (A.3). Then

sup ElXi— X <Ch*™, 0<a<1
t1<t<i1+h

Proof. Tt is straightforward from the inequality
| X — Xi| < | Xe— Xo| + X — X

and the Lemma 1.

Under the strong condition p,0 € C?, Milstein scheme [15] has the
order O(h®) of local error. The proposed method has the order O(h**1),
0 < a < 1, of local error under the weaker conditions than those of the
Milstein scheme. ]
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