• 제목/요약/키워드: Stochastic disturbances

검색결과 38건 처리시간 0.025초

Stochastic stability control analysis of an inclined stay cable under random and periodic support motion excitations

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.641-651
    • /
    • 2019
  • The stochastic stability control of the parameter-excited vibration of an inclined stay cable with multiple modes coupling under random and periodic combined support disturbances is studied by using the direct eigenvalue analysis approach based on the response moment stability, Floquet theorem, Fourier series and matrix eigenvalue analysis. The differential equation with time-varying parameters for the transverse vibration of the inclined cable with control under random and deterministic support disturbances is derived and converted into the randomly and deterministically parameter-excited multi-degree-of-freedom vibration equations. As the stochastic stability of the parameter-excited vibration is mainly determined by the characteristics of perturbation moment, the differential equation with only deterministic parameters for the perturbation second moment is derived based on the $It{\hat{o}}$ stochastic differential rule. The stochastically and deterministically parameter-excited vibration stability is then determined by the deterministic parameter-varying response moment stability. Based on the Floquet theorem, expanding the periodic parameters of the perturbation moment equation and the periodic component of the characteristic perturbation moment expression into the Fourier series yields the eigenvalue equation which determines the perturbation moment behavior. Thus the stochastic stability of the parameter-excited cable vibration under the random and periodic combined support disturbances is determined directly by the matrix eigenvalues. The direct eigenvalue analysis approach is applicable to the stochastic stability of the control cable with multiple modes coupling under various periodic and/or random support disturbances. Numerical results illustrate that the multiple cable modes need to be considered for the stochastic stability of the parameter-excited cable vibration under the random and periodic support disturbances, and the increase of the control damping rather than control stiffness can greatly enhance the stochastic stability of the parameter-excited cable vibration including the frequency width increase of the periodic disturbance and the critical value increase of the random disturbance amplitude.

Stability and Robust H Control for Time-Delayed Systems with Parameter Uncertainties and Stochastic Disturbances

  • Kim, Ki-Hoon;Park, Myeong-Jin;Kwon, Oh-Min;Lee, Sang-Moon;Cha, Eun-Jong
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권1호
    • /
    • pp.200-214
    • /
    • 2016
  • This paper investigates the problem of stability analysis and robust H controller for time-delayed systems with parameter uncertainties and stochastic disturbances. It is assumed parameter uncertainties are norm bounded and mean and variance for disturbances of them are known. Firstly, by constructing a newly augmented Lyapunov-Krasovskii functional, a stability criterion for nominal systems with time-varying delays is derived in terms of linear matrix inequalities (LMIs). Secondly, based on the result of stability analysis, a new controller design method is proposed for the nominal form of the systems. Finally, the proposed method is extended to the problem of robust H controller design for a time-delayed system with parameter uncertainties and stochastic disturbances. To show the validity and effectiveness of the presented criteria, three examples are included.

Fault Diagnosis and Accommodation of Linear Stochastic Systems with Unknown Disturbances

  • Lee, Jong-Hyo;Joon Lyou
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.270-276
    • /
    • 2002
  • An integrated robust fault diagnosis and fault accommodation strategy for a class of linear stochastic systems subjected to unknown disturbances is presented under the assumption that only a single fault may occur at a given time. The strategy is based on the fault isolation and estimation using a bank of robust two-stage Kalman filters and introduction of the additive compensation input for cancelling out the fault's effect on the system. Each filter is set up such that the residual is decoupled from unknown disturbances and fault with the influence vector designed in the filter. Simulation results for the simplified longitudinal flight control system with parameter uncertainties, process and sensor noises demonstrate the effectiveness of the present approach.

Disturbance analysis of hydropower station vertical vibration dynamic characteristics: the effect of dual disturbances

  • Zhi, Baoping;Ma, Zhenyue
    • Structural Engineering and Mechanics
    • /
    • 제53권2호
    • /
    • pp.297-309
    • /
    • 2015
  • The purpose of this work is to analyze the effect of structure parameter disturbance on the dynamic characteristics of a hydropower station powerhouse. A vibration model with a head-cover system is established, and then the general disturbance problem analysis methods are discussed. Two new formulae based on two types of disturbances are developed from existing methods. The correctness and feasibility of these two formulae are validated by analyzing the hydropower station powerhouse vibration model. The appropriate calculation method for disturbance of the hydropower station powerhouse vibration dynamic characteristics is derived.

불규칙 교란을 받는 비행체에 장착된 비선형 시스템의 난진동 해석 (Analysis on random vibration of a non-linear system in flying vehicle due to stochastic disturbances)

  • 구제선
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1426-1435
    • /
    • 1990
  • 본 연구에서는 확률론적 등가선형화 기법을 사용하여 비선형 랜덤 시스템을 선형화하였다.또 이 선형화된 시스템을 최근에 새로이 제안된 방법을 적용하여 비 백색잡음형태의 랜덤 가진을 받을 때 그 거동을 구하였다.

A Study of 'Mode Selecting Stochastic Controller' for a Dynamic System Under Random Vibration

  • Kim Yong-Kwan;Lee Jong-Bok;Heo Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제19권10호
    • /
    • pp.1846-1855
    • /
    • 2005
  • This paper presents a new stochastic controller applied on the vibration control system under irregular disturbances based on the mode selection scheme. Measured displacement and frequency characteristics are simultaneously used in designing a mode selecting controller. This technique is validated by applying to the suppression problem of a flexible beam with randomly vibrated circumstances. The presented method, called Mode Selecting Stochastic Controller, uses the frequency measurement of the flexible system based on a Fast-Fourier transformation algorithm. This controller is constructed by combining mode selection method with previous known Stochastic Controller in real time: Numerical simulations and several experiments are conducted to validate the proposed method. The performance of the proposed method is compared with a stochastic controller developed recently. This method was improved compared with previous one.

불확실성을 갖는 선형 확률적 시스템에 대한 고장허용제어기 설계 (Fault Tolerant Controller Design for Linear Stochastic Systems with Uncertainties)

  • 이종효;유준
    • 제어로봇시스템학회논문지
    • /
    • 제9권2호
    • /
    • pp.107-116
    • /
    • 2003
  • This paper presents a systematic design methodology for fault tolerant controller against a fault in actuators and sensors of linear stochastic systems with uncertainties. The scheme is based on fault detection and diagnosis(isolation and estimation) using a bank of robust two-stage Kalman filters, and accommodation of the actuator fault by eigenstructure assignment and immediate compensation of the sensor's faulty measurement. In order to clarify the fault feature in test statistics of residual, noise reduction method is given by multi-scale discrete wavelet transform. The effectiveness of our approach Is shown via simulations for a VTOL(vertical take-off and landing) aircraft subjected to parameter variations, external disturbances, process and sensor noises.

확률영역에서 시스템 출력만을 이용한 시스템 규명 (System Identification Using Stochastic Output Only)

  • 박성만;이동희;이종복;권오신;김진성;허훈
    • 한국소음진동공학회논문집
    • /
    • 제17권10호
    • /
    • pp.918-922
    • /
    • 2007
  • Most of the study on system identification has been carried out using input/output relation in physical domain. However identification concept of stochastic system has not been reported up to now. Interest is focused to identify an unknown dynamic system under random external disturbances which is not possible to measure. A concept to identify the system parameters in stochastic domain is proposed and implemented in terms of simulation. Attempt has been made to identify the system parameters in inverse manner in stochastic domain based on system output only. Simulation is conducted to reveal quite noticeable performance of the proposed concept.

Semi-active bounded optimal control of uncertain nonlinear coupling vehicle system with rotatable inclined supports and MR damper under random road excitation

  • Ying, Z.G.;Yan, G.F.;Ni, Y.Q.
    • Coupled systems mechanics
    • /
    • 제7권6호
    • /
    • pp.707-729
    • /
    • 2018
  • The semi-active optimal vibration control of nonlinear torsion-bar suspension vehicle systems under random road excitations is an important research subject, and the boundedness of MR dampers and the uncertainty of vehicle systems are necessary to consider. In this paper, the differential equations of motion of the coupling torsion-bar suspension vehicle system with MR damper under random road excitation are derived and then transformed into strongly nonlinear stochastic coupling vibration equations. The dynamical programming equation is derived based on the stochastic dynamical programming principle firstly for the nonlinear stochastic system. The semi-active bounded parametric optimal control law is determined by the programming equation and MR damper dynamics. Then for the uncertain nonlinear stochastic system, the minimax dynamical programming equation is derived based on the minimax stochastic dynamical programming principle. The worst-case disturbances and corresponding semi-active bounded parametric optimal control are obtained from the programming equation under the bounded disturbance constraints and MR damper dynamics. The control strategy for the nonlinear stochastic vibration of the uncertain torsion-bar suspension vehicle system is developed. The good effectiveness of the proposed control is illustrated with numerical results. The control performances for the vehicle system with different bounds of MR damper under different vehicle speeds and random road excitations are discussed.

확률제어 기법을 이용한 불규칙 진동계의 모델추종 이중제어기 설계 (Model Following Dual Controller Design for Random Vibrating System Using a Stochastic Controller Technique)

  • 이종복;김홍윤;안준영;허훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.525-528
    • /
    • 2005
  • Much of the study has been dong on the design of dual controller that guarantee the stability and improvement of the system performance. A dual controller concept is proposed to consist of first controller estimates the control law and second controller suppresses the combined noises due to numerical error and internal noise as well. These irregular disturbances are not only increasing the fatigue but also destabilize the system because of unwanted output performance. The 'stochastic controller' is used to suppress the irregular random disturbance. Simulation is conducted to reveal that the proposed dual stochastic controller is highly efficient one to control a system hybrid noises.

  • PDF