• Title/Summary/Keyword: Stochastic Time-series

Search Result 170, Processing Time 0.031 seconds

Simulation of non-Gaussian stochastic processes by amplitude modulation and phase reconstruction

  • Jiang, Yu;Tao, Junyong;Wang, Dezhi
    • Wind and Structures
    • /
    • v.18 no.6
    • /
    • pp.693-715
    • /
    • 2014
  • Stochastic processes are used to represent phenomena in many diverse fields. Numerical simulation method is widely applied for the solution to stochastic problems of complex structures when alternative analytical methods are not applicable. In some practical applications the stochastic processes show non-Gaussian properties. When the stochastic processes deviate significantly from Gaussian, techniques for their accurate simulation must be available. The various existing simulation methods of non-Gaussian stochastic processes generally can only simulate super-Gaussian stochastic processes with the high-peak characteristics. And these methodologies are usually complicated and time consuming, not sufficiently intuitive. By revealing the inherent coupling effect of the phase and amplitude part of discrete Fourier representation of random time series on the non-Gaussian features (such as skewness and kurtosis) through theoretical analysis and simulation experiments, this paper presents a novel approach for the simulation of non-Gaussian stochastic processes with the prescribed amplitude probability density function (PDF) and power spectral density (PSD) by amplitude modulation and phase reconstruction. As compared to previous spectral representation method using phase modulation to obtain a non-Gaussian amplitude distribution, this non-Gaussian phase reconstruction strategy is more straightforward and efficient, capable of simulating both super-Gaussian and sub-Gaussian stochastic processes. Another attractive feature of the method is that the whole process can be implemented efficiently using the Fast Fourier Transform. Cases studies demonstrate the efficiency and accuracy of the proposed algorithm.

A Stochastic Model for Air Pollutant Concentration (大氣汚染濃度에 관한 確率모델)

  • 김해경
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.2
    • /
    • pp.127-136
    • /
    • 1991
  • This paper is concerned with the development and application of a stochastic model for daily sulphur dioxide $(SO_2)$ concentrations in urban area (Seoul). For this, the characteristics of the regression trend, periodicity and dependence of the daily $SO_2$ concentration are investigated by a statistisical analysis of the daily average $SO_2$ values measured in Seoul area during 1989 $\sim$ 1990. Based on these, nonlinear regression time series model for the prediction of daily $SO_2$ concentrations is derived. A statistical procedure for using the model to predict the concentration level is also proposed.

  • PDF

Stochastic Characteristics of Water Quality Variation of the Chungju Lake (충주호 수질변동의 추계학적 특성)

  • 정효준;황대호;백도현;이홍근
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.3
    • /
    • pp.35-42
    • /
    • 2001
  • The characteristics of water quality variation were predicted by stochastic model in Chungju dam, north Chungcheong province of south Korea, Monthly time series data of water quality from 1989 to 2001;temperature, BOD, COD and SS, were obtained from environmental yearbook and internet homepage of ministry of environment. Development of model was carried out with Box-Jenkins method, which includes model identification, estimation and diagnostic checking. ACF and PACF were used to model identification. AIC and BIC were used to model estimation. Seosonal multiplicative ARIMA(1, 0, 1)(1, 1, 0)$_{12}$ model was appropriate to explain stochastic characteristics of temperature. BOD model was ARMa(2, 2, 1), COD was seasonal multiplicative ARIMA(2. 0. 1)(1. 0, 1)$_{12}$, and SS was ARIMA(1, 0, 2) respectively. The simulated water quality data showed a good fitness to the observed data, as a result of model verification.ion.

  • PDF

Stochastic procedures for extreme wave induced responses in flexible ships

  • Jensen, Jorgen Juncher;Andersen, Ingrid Marie Vincent;Seng, Sopheak
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1148-1159
    • /
    • 2014
  • Different procedures for estimation of the extreme global wave hydroelastic responses in ships are discussed. Firstly, stochastic procedures for application in detailed numerical studies (CFD) are outlined. The use of the First Order Reliability Method (FORM) to generate critical wave episodes of short duration, less than 1 minute, with prescribed probability content is discussed for use in extreme response predictions including hydroelastic behaviour and slamming load events. The possibility of combining FORM results with Monte Carlo simulations is discussed for faster but still very accurate estimation of extreme responses. Secondly, stochastic procedures using measured time series of responses as input are considered. The Peak-over-Threshold procedure and the Weibull fitting are applied and discussed for the extreme value predictions including possible corrections for clustering effects.

Stochastic interpolation of earthquake ground motions under spectral uncertainties

  • Morikawa, Hitoshi;Kameda, Hiroyuki
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.839-851
    • /
    • 1997
  • Closed-form solutions are analytically derived for stochastic properties of earthquake ground motion fields, which are conditioned by an observed time series at certain observation sites and are characterized by spectra with uncertainties. The theoretical framework presented here can estimate not only the expectations of such simulated earthquake ground motions, but also the prediction errors which offer important information for the field of engineering. Before these derivations are made, the theory of conditional random fields is summarized for convenience in this study. Furthermore, a method for stochastic interpolation of power spectra is explained.

Modeling of Stochastic Properties of Internal Heat Generation of an Office Building for Slab Cooling Storage (사무소건물의 슬래브축냉을 위한 내부발열부하의 확률적 성상 모델화)

  • Jung, Jae-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.836-842
    • /
    • 2011
  • It has been shown that the air-conditioning system with slab cooling storage is effective in cutting peak load and utilizing nighttime electric power. The stochastic properties of internal heat generation which has great influence on the cooling load are examined in this paper. Based on the measured cooling load and electric power consumption in an office building with slab cooling storage, stochastic time series models to simulate these random processes are investigated. Furthermore, a calculated result by an optimal control method of thermal analysis taking into account the internal heat is compared with the measured cooling load.

Time Series Analysis of Engine Test Data (엔진 시험 데이터에 대한 시계열 분석)

  • Kim, Il-Doo;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.241-245
    • /
    • 2011
  • In an engine test, data are collected in a form of a time series. Usually only the time average of a time series is interesting to engineers while its stochastic fluctuation is being ignored. In this paper, we collect pressure and fuel flux data from an air-breathing engine test and analyze their fluctuations using the multiscale sample entropy analysis, which is suggested as a measure of the complexity of a time series. It is shown that different physical quantities indeed have different complexities at each timescales, suggesting a possibility of an instantaneous tool which evaluates the engine test.

  • PDF

Modeling and Simulation of Road Noise by Using an Autoregressive Model (자기회귀 모형을 이용한 로드노이즈 모델링과 시뮬레이션)

  • Kook, Hyung-Seok;Ih, Kang-Duck;Kim, Hyoung-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.888-894
    • /
    • 2015
  • A new method for the simulation of the vehicle's interior road noise is proposed in the present study. The road noise model can synthesize road noise of a vehicle for varying driving speed within a range. In the proposed method, interior road noise is considered as a stochastic time-series, and is modeled by a nonstationary parametric model via two steps. First, each interior road noise signal, obtained from constant speed driving tests performed within a range of speed, is modeled as an autoregressive model whose parameters are estimated by using a standard method. Finally, the parameters obtained for different driving speeds are interpolated based on the varying driving speed to yield a time-varying autoregressive model. To model a full band road noise, audible frequency range is divided into an octave band using a wavelet filter bank, and the road noise in each octave band is modeled.

Forecasting of Hairtail (Trichiurus lepturus) Landings in Korean Waters by Times Series Analysis (시계열 분석에 의한 어획량 예측 - 한국 근해산 갈치를 예로 하여 -)

  • YOO Sinjae;ZHANG Chang-Ik
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.4
    • /
    • pp.363-368
    • /
    • 1993
  • Short-term forecasting of fish catch is of practical importance in fisheries management. Ecosystem models and multi-species models as well as traditional single-species models fall short of predicting power needed for practical management of fisheries resources due to the lack of sufficient data or information for the required parameters. Univariate time series analysis, on the other hand, extracts the information on the stochastic variability from the time series itself and makes estimates of the future stochastic variability. Therefore, it can be used for short-term forecasting with minimum data requirements. ARIMA time series modeling has been applied to the monthly Korean catches of hairtail (Trichiurus lepturus) for $1971{\sim}1988$. Forecasts of hairtail catch were made and compared with the actual catch data from $1989{\sim}1990$ which were not included in the parameter estimation. The results showed a good agreement (r=0.938) between the forecasts and the actual catches with a mean rotative error of $59.5\%$

  • PDF

Trends in the Climate Change of Surface Temperature using Structural Time Series Model (구조적 시계열 모형을 이용한 기온 자료에 대한 기후변화 추세 분석)

  • Lee, Jeong-Hyeong;Sohn, Keon-Tae
    • Atmosphere
    • /
    • v.18 no.3
    • /
    • pp.199-206
    • /
    • 2008
  • This study employs a structural time series method in order to model and estimate stochastic trend of surface temperatures of the globe, Northern Hemisphere, and Northeast Asia ($20^{\circ}N{\sim}60^{\circ}N$, $100^{\circ}E{\sim}150^{\circ}E$). For this study the reanalysis data CRUTEM3 (CRU/Hadley Centre gridded land-surface air temperature Version 3) is used. The results show that in these three regions range from $0.268^{\circ}C$ to $0.336^{\circ}C$ in 1997, whereas these vary from $0.423^{\circ}C$ to $0.583^{\circ}C$ in 2007. The annual mean temperature over Northeast Asia has increased by $0.031^{\circ}C$ in 2007 compared to 1997. The climate change in surface temperatures over Northeast Asia is slightly higher than that over the Northern Hemisphere.