In this paper, we focus an optimal policy focus optimal class of (s, S) inventory control systems. To this end, we use the perturbation analysis and apply a stochastic optimization algorithm to minimize the average cost over a period. We obtain the gradients of objective function with respect to ordering amount S and reorder point s via a combined perturbation method. This method uses the infinitesimal perturbation analysis and the smoothed perturbation analysis alternatively according to occurrences of ordering event changes. Our simulation results indicate that the optimal estimates of s and S obtained from a stochastic optimization algorithm are quite accurate. We consider that this may be due to the estimated gradients of little noise from the regenerative system simulation, and their effect on search procedure when we apply the stochastic optimization algorithm. The directions for future study stemming from this research pertain to extension to the more general inventory system with regard to demand distribution, backlogging policy, lead time, and review period. Another directions involves the efficiency of stochastic optimization algorithm related to searching procedure for an improving point of (s, S).
We propose a quantized gradient search algorithm that can achieve global optimization by monotonically reducing the quantization step with respect to time when quantization is composed of integer or fixed-point fractional values applied to an optimization algorithm. According to the white noise hypothesis states, a quantization step is sufficiently small and the quantization is well defined, the round-off error caused by quantization can be regarded as a random variable with identically independent distribution. Thus, we rewrite the searching equation based on a gradient descent as a stochastic differential equation and obtain the monotonically decreasing rate of the quantization step, enabling the global optimization by stochastic analysis for deriving an objective function. Consequently, when the search equation is quantized by a monotonically decreasing quantization step, which suitably reduces the round-off error, we can derive the searching algorithm evolving from an optimization algorithm. Numerical simulations indicate that due to the property of quantization-based global optimization, the proposed algorithm shows better optimization performance on a search space to each iteration than the conventional algorithm with a higher success rate and fewer iterations.
A new approach in solving design centering problem is presented. Like most stochastic optimization problems, optimal design centering problems have intrinsic difficulties in multivariate intergration of probability density functions. In order to avoid to avoid those difficulties, genetic algorithm and very coarse Monte Carlo simulation are used in this research. The new algorithm performs robustly while producing improved yields. This result implies that the combination of robust optimization methods and approximated simulation schemes would give promising ways for many stochastic optimizations which are inappropriate for mathematical programming.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권11호
/
pp.4355-4371
/
2020
Phase retrieval, recovering a signal from phaseless measurements, is generally considered to be an NP-hard problem. This paper adopts an amplitude-based nonconvex optimization cost function to develop a new stochastic gradient algorithm, named stochastic reweighted phase retrieval (SRPR). SRPR is a stochastic gradient iteration algorithm, which runs in two stages: First, we use a truncated sample stochastic variance reduction algorithm to initialize the objective function. The second stage is the gradient refinement stage, which uses continuous updating of the amplitude-based stochastic weighted gradient algorithm to improve the initial estimate. Because of the stochastic method, each iteration of the two stages of SRPR involves only one equation. Therefore, SRPR is simple, scalable, and fast. Compared with the state-of-the-art phase retrieval algorithm, simulation results show that SRPR has a faster convergence speed and fewer magnitude-only measurements required to reconstruct the signal, under the real- or complex- cases.
The simulated annealing(SA) algorithm is a stochastic strategy for search of the ground state and a powerful tool for optimization, based on the annealing process used for the crystallization in physical systems. It's main disadvantage is the long convergence time. Therefore, this paper proposes a stochastic algorithm combined with conventional deterministic optimization method to reduce the computation time, which is called SDS(Stochastic-Deterministic-Stochastic) method.
본 논문에서는 자동 독순(automatic lipreading)의 인식기로 쓰이는 은닉 마르코프 모델(HMM: hidden Markov model)의 새로운 확률적 최적화 기법을 제안한다. 제안하는 기법은 전역 최적화가 가능한 확률적 기법인 모의 담금질과 지역 최적화 기법을 결합하는 것으로써, 알고리즘의 빠른 수렴과 좋은 해로의 수렴을 가능하게 한다. 제안하는 알고리즘이 전역 최적해로 수렴함을 수학적으로 보인다. 제안하는 기법을 통해 HMM을 학습함으로써 기존의 알고리즘이 지역해만을 찾는 단점을 개선함으로써 향상된 독순 성능을 나타냄을 실험으로 보인다.
본 논문의 목적은 이항출력 실험을 이용할 경우에 확률적 전역 최적화 방법론들을 검토하고 알고리즘들간의 성능을 비교하기 위한 것이다. 모 성공확률은 알수 없고 확률적 특성을 갖기 때문에 확률적 전역 최적화 방법론에서는 모 성공확률 대신 성공확률의 추정치를 이용한다. 언덕오르기 알고리즘 , 단순랜덤탐색, 랜덤재출발 랜덤탐색, 랜덤 최적화, 담금질 기법 및 군집기반의 알고리즘인 입자 군집 최적화 알고리즘을 확률적 전역 최적화 알고리즘으로 사용하였다. 알고리즘의 비교를 위하여 두가지 테스트 함수(하나는 단봉이고 나머지는 다봉임)가 제안되었고 몬테카를로 시뮬레이션을 이용하여 알고리즘의 성능을 평가하였다. 단순 테스트 함수에 대하여는 모든 알고리즘이 유사한 성능을 보이고 있다. 복잡한 다봉의 테스트 함수에 대하여는 랜덤재출발 랜덤최적화, 담금질 기법과 군집 기반의 입자군집 알고리즘이 훨씬 더 좋은 성능을 보임을 알 수 있다.
This paper deals with a new approach to tolerance optimization problems. Optimal tolerance allotment problems can be formulated as stochastic optimization problems. Most schemes to solve the stochastic optimization problems have been found to exhibit difficulties in multivariate integration of the probability density function. As a typical example of stochastic optimization the optimal tolerance allotment problem has the same difficulties. In this stochastic model, manufacturing system is represented by Gauss-Markov stochastic process and the manufacturing unit availability is characterized for realistic optimization modeling. The new algorithm performed robustly for a large deviation approximation. A significant reduction in computation time was observed compared to the results obtained in previous studies.
In this paper, we consider an optimal allocation of constant service efforts in queueing network to maximize the system throughput. For this purpose, using the perturbation analysis, we apply a stochastic optimization algorithm to two types of queueing systems. Our simulation results indicate that the estimates obtained from a stochastic optimization algorithm for a two-tandem queuing network are very accurate, and those for closed loop manufacturing system are a little apart from the known optimal allocation. We find that as simulation time increases for obtaining a new gradient (performance measure with respect to decision variables) by perturbation algorithm, the estimates tend to be more stable. Thus, we consider that it would be more desirable to have more accurate sensitivity of performance measure by enlarging simulation time rather than more searching steps with less accurate sensitivity. We realize that more experiments on various types of systems are needed to identify such a relationship with regards to stopping rule, the size of moving step, and updating period for sensitivity.
This paper presents the optimum design of the brushless motor to maximize the output power per weight considering the design parameter tolerance. The optimization is proceeded by commercial software that is adopted the scatter-search algorithm and the characteristic analysis is conducted by FEM. The stochastic optimum design results are compared with those of the deterministic optimization method. We can verify that the results of the stochastic optimization is superior than that of deterministic optimization.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.