• Title/Summary/Keyword: Stiffness Modulus

Search Result 486, Processing Time 0.026 seconds

An Analytical Study on the Buckling of Orthotropic Plates and Local Buckling of Compression Members (직교이방성 판의 좌굴 및 압축재의 국부좌굴에 대한 해석적 연구)

  • Choi, Jin-Woo;Lee, Kang-Yeon;Park, Jung-Hwan;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.21-28
    • /
    • 2012
  • In this paper, we present the analytical study results pertaining to the buckling of the orthotropic plates and local buckling of structural compression members composed of orthotropic plate components. Fiber reinforced polymeric plastic (FRP) materials, have many advantages over conventional structural materials such as steel and concrete. The advantages of the FRP materials are high specific strength and stiffness, high corrosion resistance, right weight, etc. Among the various manufacturing methods, pultrusion process is one of the best choices for the mass production of structural plastic members. Since the major reinforcing fibers are placed along the axial direction of the member, this material is usually considered as an orthotropic (tranversely isotropic, more specifically) material. However, pultruded fiber reinforced plastic structural members have low modulus of elasticity and are composed of orthotropic thin plate components the members are prone to buckle. Therefore, stability is an important issue in the design of the pultruded FRP structural members. In this paper, the buckling of orthotropic plates and the local buckling of pultruded FRP structural members are investigated by following the previous research results and the local buckling strength of the member produced in the domestic manufacturer is found.

Condition Evaluation of the Pavement Foundations Using Multi-load Level FWD Deflections (다단계 하중 FWD를 사용한 도로기초 상태평가 연구)

  • Park, Hee-Mun;Kim, Richard Y.;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.261-271
    • /
    • 2003
  • A condition evaluation procedure for the pavement foundations using multi-load level Falling Weight Deflectometer(FWD) deflections is presented in this paper. A dynamic finite element program incorporating a stress-dependent material model, was used to generate the synthetic deflection database. Based on this synthetic database, the relationships between surface deflections and critical responses, such as stresses and strains in base and subgrade layers, have been established. FWD deflection data, Dynamic Cone Penetrometer(UP) data, and repeated load resilient modulus testing results used in developing this procedure were collected from the Long Term Pavement Performance (LTPP) and North Carolina Department of Transportation (NCDOT) database. Research effort focused on investigation of the effect of the FWD load level on the condition evaluation procedures. The results indicate that the proposed procedure can estimate the pavement foundation conditions. It is also found that structurally adjusted Base Damage Index (BDI) and Base Curvature Index (BCI) are good indicators for the prediction of stiffness characteristics of aggregate base and subgrade respectively. A FWD test with a load of 66.7 kN or less does not improve the accuracy of this procedure. Results from the study for the nonlinear behavior of a pavement foundations indicate that the deflection ratio obtained from multi-load level deflections can predict the type and quality of the pavement foundation materials.

Mechanical behavior of rock-coal-rock specimens with different coal thicknesses

  • Guo, Wei-Yao;Tan, Yun-Liang;Yu, Feng-Hai;Zhao, Tong-Bin;Hu, Shan-Chao;Huang, Dong-Mei;Qin, Zhe
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.1017-1027
    • /
    • 2018
  • To explore the influence of coal thickness on the mechanical behavior and the failure characteristics of rock-coal-rock (RCR) mass, the experimental investigation of uniaxial compressive tests was conducted first and then a systematic numerical simulation by particle flow code (PFC2D) was performed to deeply analyze the failure mechanical behavior of RCR specimens with different coal thicknesses in conventional compression tests. The overall elastic modulus and peak stress of RCR specimens lie between the rock and the coal. Inter-particle properties were calibrated to match the physical sample strength and the stiffness response. Numerical simulation results show that the deformation and strength behaviors of RCR specimens depend not only on the coal thickness, but also on the confining pressure. Under low confining pressures, the overall failure mechanism of RCR specimen is the serious damage of coal section when the coal thickness is smaller than 30 mm, but it is shear failure of coal section when the coal thickness is larger than 30 mm. Whereas under high confining pressures, obvious shear bands exist in both the coal section and the rock section when the coal thickness is larger than 30 mm, but when the coal thickness is smaller than 30mm, the failure mechanism is serious damage of coal section and shear failure of rock section.

Tunnel Stability Assessment Considering Rock Damage from Blasting Near to Excavation Line (굴착선 주변공 발파의 암반손상을 고려한 터널 안정성 검토)

  • 이인모;윤현진;이형주;이상돈;박봉기
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.167-178
    • /
    • 2003
  • Damage and overbreak of the remaining rock induced by blasting can not be avoided during tunnel construction which may result in either short-term or long-term tunnel instability. Therefore, in this paper, a methodology to take into account the effect of blast-induced damage in tunnel stability assessment is proposed. Dynamic numerical analysis was executed to evaluate damage and overbreak of the remaining rock for the most common blasting pattern in road tunnel. Rock damage was quantified by utilizing the damage variable factor which is adopted proposed in continuum damage mechanics. The damaged rock stiffness and the damaged failure criteria are used to consider the effect of rock damage in tunnel stability analysis. The damaged geological strength index of the damaged rock was newly proposed from the relationship between deformation modulus and geological strength index. Also the Hoek-Brown failure criteria of the damaged rock was obtained using the damaged geological strength index. Analysing the tunnel stability with the consideration of the blast-induced damage of remaining rock, it was found that the extend of plastic zone and deformation increased compared to the undamaged rock. Therefore the short-term or long-term tunnel stability will be threatened when the rock damage from blasting is ignored in the tunnel stability analysis.

Characteristics of Sand-Rubber Mixtures under Different Strain Levels: Experimental Observation (변형률에 따른 모래-고무 혼합재의 거동 특성: 실험적 관찰)

  • Lee, Chang-Ho;Byun, Yong-Hoon;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.85-94
    • /
    • 2011
  • Mixtures of sand and rubber particles ($D_{sand}/D_{rubber}=1$) are investigated to explore their characteristics under different stain level. Mixtures are prepared with different volumetric sand fractions ($sf=V_{sand}/V_{total}$). Experimental data are gathered from a resonant column, an instrumented oedometer, and a direct shear tests. Results show that sand and rubber differently control the behavior of the whole mixture with strain level. Non-linear degradation of small strain stiffness is observed for the mixtures with $sf{\geq}0.4$, while the mixtures with low sand fraction ($sf{\leq}0.2$) show significantly high elastic threshold strain. Vertical stress-deformation increases dramatically when the rubber particle works as a member of force chain. The strength of the mixtures increases as the content of rubber particle decreases, and contractive behavior is observed in the mixtures with $sf{\leq}0.8$. Rubber particle plays different roles with strain level in the mixture: it increases a coordination number and controls a plasticity of the mixture in small strain; it prevents a buckling of force chain in intermediate strain; it leads a contractive behavior in large strain.

Studies on Morphological and Physical Characteristics of Wheat and Barley Culms under Different Cultural Conditions 1. Effects of Top-Dressing Time of Nitrogen on Morphological and Physical Characteristics of Barley Culms (재배조건에 따른 맥간의 형태적 및 생리적 특성변화에 관한 연구 I. 질소추비시기가 맥간의 형태적 및 생리적특성에 미치는 영향)

  • Hong-Suk Lee;Chang-Hwan Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.14
    • /
    • pp.117-121
    • /
    • 1973
  • This experiment was conducted to study the effects of nitrogen top-dressed at the different growth stages on the morphological and physical characteristics of barley culm. The results obtained are summarized as follows: 1. By top-dressing of nitrogen in March, each internode length from the third to the fifth internode was shortened, and total fresh weight of the top, dry weight per unit culm, inside or outside culm diameter and thickness of culm were increased. Therefore these characteristics related to lodging indicated the beneficial changes for lodging resistance by top-dressing of nitrogen in March. 2. Both weight of culm at breaking and bending moment of culm at breaking, expressing lodging resistance of culm, were increased in the plots of nitrogen top-dressed in March. Accordingly lodging resistance became higher by top-dressing of nitrogen in March. 3. Both section modulus and secondary moment of inertia, expressing bending stiffness of culm, were increased by top-dressing of nitrogen in March. Accordingly lodging index, expressing comprehensive lodging resistance, became low by top-dressing of nitrogen in March. 4. Both spike weight and grain yield were increased by top-dressing of nitrogen in March. Consequently we came to the conclusion that the suitable top-dressing time of nitrogen was in March.

  • PDF

Development of the Structural Condition Evaluation Technique for Asphalt Pavements Using Falling Weight Deflectometer Deflections (Falling Weight Deflectometer 처짐값을 이욤한 아스팔트 포장체의 구조적 상태 평가기법 개발)

  • Son, Jong-Chul;Rhee, Suk-Keun;An, Deok-Soon;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.8 no.4 s.30
    • /
    • pp.115-124
    • /
    • 2006
  • The objectives of this paper are to develop the structural condition evaluation technique using Falling Weight Deflectometer deflections and propose the structural condition criteria for asphalt pavements. To figure out correlation between surface deflections and critical pavement responses, the synthetic database has been established using the finite element pavement structural analysis program. A regression approach was adopted to develop the pavement response model that can be used to compute the stresses and strains within pavement structure using the FWD deflections. Based on the pavement response model, the procedure for assessing the structural condition of pavement layers was proposed in this study. To validate the condition evaluation procedure for asphalt pavements, the FWD test, dynamic cone penetrometer test, and repeated triaxial compression test were conducted on 11 sections of national highway and 8 sections of local road. Test results indicate that the tensile strain at the bottom of AC layer and AC elastic modulus were good indicators for estimating the stiffness characteristics of AC layer. For subbase layer, the BDI value and compressive strain on top of the subbase layer were appropriate to predict the structural capacity of subbase layer. The BCI value and compressive strain on top of the subgrade were found to be good indicators for evaluating the structural condition of the subgrade. The evaluation criteria for structural condition in asphalt pavements was also proposed in this paper.

  • PDF

Feasibility of Domestic Yellow Poplar (Liriodendron tulipifera) Dimension Lumber for Structural Uses (국산 백합나무 구조용 제재목의 이용가능성 평가)

  • Lim, Jin-Ah;Oh, Jung-Kwon;Yeo, Hwan-Myeong;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.470-479
    • /
    • 2010
  • In this study, the visual grading based on the visual characteristics and structural timber bending test were conducted for domestic yellow poplar dimension lumber. Structural performance of domestic yellow poplar dimension lumber was conducted through the evaluation of strength and stiffness. Visual grading rule of yellow poplar dimension lumber did not exist in Korea. Visual grading of yellow poplar dimension lumber was performed according to the NSLB (Northern Softwood Lumber Bureau) standard grading rules including several hardwood dimension lumber. The allowable bending stress was calculated from the results of a visual grading. Compared with NDS (National Design Specification), the yellow poplar dimension lumber showed enough strength for structural uses. In addition, the visual grading was performed according to the KFRI (Korea Forest Research Institute) grading rule to calculated allowable bending stress and to evaluated the feasibility. The yellow poplar was classified into the pine groups by the KFRI criteria regulated by specific gravity. Allowable bending stress based on weibull distribution had became highly than KFRI criteria, as No. 1 (10.0 MPa), No. 2 (7.4 MPa) and No. 3 (4.1 MPa). And the availability of yellow poplar dimension lumber for structural uses had been confirmed. The Modulus of Elasticity (MOE) of domestic yellow poplar dimension lumber had not met the NDS and KFRI criteria. However, for the use of domestic yellow poplar, average values of MOE which obtained through this test were suggested as design value for domestic yellow poplar. Design values were supposed No. 1, 2 (9,000 MPa) and No. 3 (8,000 MPa).

Structural analysis of flexible wing using linear equivalent model (선형 등가모델을 이용한 유연날개 구조해석)

  • Kim, Sung Joon;Kim, Dong Hyun;Lim, Joosup;Lee, Sang Wook;Kim, Tae-Uk;Kim, Seungho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.699-705
    • /
    • 2015
  • Aircraft needs high lift-to-drag ratio and weight reduction of the structure for long endurance flight with a small power. Generally high aspect ratio wing is applied to HALE(High Altitude Long Endurance) aircraft. Also high modulus, and high strength CFRP(Carbon Fiber Reinforced Plastic) has been used in primary structures. and thin mylar(membrane material) film has been applied to skin of wing. As a result, wing is more flexible than the other structures. and the stiffness of thin mylar film has an affect on dynamic stability. In this study, the membrane characteristic of mylar film has been simulated using nonlinear gap elements. And equivalent modeling method using shell elements is presented using the nonlinear simulation result. The linear equivalent model has verified using the results of nonlinear membrane method. Proposed linear equivalent shell model has applied to mode analysis for estimate the effect of mylar mechanical properties on natural frequency.

Evaluation on the Mechanical Performance of Concrete Using Entanglement Polyamide Fiber (다발형 폴리아미드섬유 보강 콘크리트의 역학적 성능평가)

  • Jeon, Joong Kyu;Kim, Gyu Yong;Jeon, Chan Ki;Lee, Soo Choul
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.3
    • /
    • pp.223-233
    • /
    • 2012
  • Steel fiber is high stiffness and large weight. So, Pumping hose to rupture of the safety management is difficult. Steel fiber caused by corrosion of the deterioration of durability and high-rebound losses are needed for the improvements. Thus, the revised regulations in 2009 by a steel fiber to reinforce other materials is possible. Variety of fiber reinforcement material for concrete review of applicability is needed. Steel fiber strength than the other fibers is large and by the geometry of the fibers are attached to improve performance. However, compared to steel fiber organic fibers and low modulus of elasticity and tensile strength of fiber and agglomeration occurs in the concrete to be used as reinforcement material is difficult. In this regard, the present study as a single object in the micro-fiber bouquet sharp entanglement through make muck attach surface area, distributed fibers from surfactant of the surface enhanced polyamide fibers, steel fiber and PP fiber reinforced concrete by comparing the scene to provide a basis for the use.