DOI QR코드

DOI QR Code

Characteristics of Sand-Rubber Mixtures under Different Strain Levels: Experimental Observation

변형률에 따른 모래-고무 혼합재의 거동 특성: 실험적 관찰

  • Lee, Chang-Ho (School of Civil, Environmental, and Architectural Engrg., Korea Univ.) ;
  • Byun, Yong-Hoon (School of Civil, Environmental, and Architectural Engrg., Korea Univ.) ;
  • Lee, Jong-Sub (School of Civil, Environmental, and Architectural Engrg., Korea Univ.)
  • 이창호 (고려대학교 건축사회환경공학부) ;
  • 변용훈 (고려대학교 건축사회환경공학부) ;
  • 이종섭 (고려대학교 건축사회환경공학부)
  • Received : 2010.12.01
  • Accepted : 2011.01.04
  • Published : 2011.03.31

Abstract

Mixtures of sand and rubber particles ($D_{sand}/D_{rubber}=1$) are investigated to explore their characteristics under different stain level. Mixtures are prepared with different volumetric sand fractions ($sf=V_{sand}/V_{total}$). Experimental data are gathered from a resonant column, an instrumented oedometer, and a direct shear tests. Results show that sand and rubber differently control the behavior of the whole mixture with strain level. Non-linear degradation of small strain stiffness is observed for the mixtures with $sf{\geq}0.4$, while the mixtures with low sand fraction ($sf{\leq}0.2$) show significantly high elastic threshold strain. Vertical stress-deformation increases dramatically when the rubber particle works as a member of force chain. The strength of the mixtures increases as the content of rubber particle decreases, and contractive behavior is observed in the mixtures with $sf{\leq}0.8$. Rubber particle plays different roles with strain level in the mixture: it increases a coordination number and controls a plasticity of the mixture in small strain; it prevents a buckling of force chain in intermediate strain; it leads a contractive behavior in large strain.

다양한 모래부피비($sf=V_{sand}/V_{total}$)를 가지는 시료를 조성하여 변형률 크기에 따른 모래-고무 혼합재($D_{sand}/D_{rubber}=1$)의 거동을 분석하였다. 공진주시험, 압밀시험, 그리고 직접전단시험을 실시하였다. 변형률 크기에 따라 모래와 고무는 혼합재 전체 거동을 서로 다르게 제어한다. $sf{\geq}0.4$의 혼합재는 비선형 전단강성의 감소가 관찰되는 반면, $sf{\leq}0.2$의 낮은 모래부피비를 가지는 혼합재는 상당히 높은 탄성한계변형률을 보인다. 고무 입자가 force chain의 역할을 수행할 때 수직변형은 급격한 증가를 보인다. 혼합재 내의 고무부피비가 감소함에 따라 혼합재의 강도는 증가하는 경향을 보이며 $sf{\leq}0.8$의 혼합재는 전단변형에 따라 부피 수축 거동을 보인다. 고무 입자는 변형률 크기에 따라 혼합재 내에서 서로 다른 역할을 수행한다: 미소변형률 영역에서는 혼합재 내의 접촉수 증가 및 소성의 제어; 중간변형률 영역에서는 force chain의 좌굴 방지; 그리고 대변형률 영역에서는 혼합재의 부피수축 거동을 이끈다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Ahmed, I. and Lovell, C. W. (1993), "Rubber soils as light weight geomaterials", Transportation research record 1422. Transportation Research Board, Washington D.C., 61-70.
  2. American Coal Ash Association (2008), 2008 Coal combustion product (CCP) production & use survey report.
  3. ASTM. (2006), "Standard test method for specific gravity of soil solids by water pycnometer", ASTM D854-06e1, West Conshohoken, Pa.
  4. ASTM. (2009), "Standard test method for density of hydraulic cement", ASTM C188-05, West Conshohoken, Pa.
  5. Atkinson, J. H. (2000), "Non-linear soil stiffness in routine design", Geotechnique, 50(5), 487-508. https://doi.org/10.1680/geot.2000.50.5.487
  6. Aydilek, A. h., Madden, E. T., and Demirkan, M. M. (2006), "Field evaluation of a leachate collection system constructed with scrap tires", J. of. Geotech. Geoenviron. Eng., ASCE, 132(8), 990-1000. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:8(990)
  7. Bosscher, P. J., Edil, T. B., and Kuraoka, S. (1997), "Design of highway embankments using tire chips", J. of Geotech. Geoenviron. Eng., ASCE, 123(4), 295-304. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(295)
  8. Diaz-Rodriguez, J. A. and Santamarina, J. C. (2001), "Mexico City Soil Behavior at Different Strains: Observations and Physical Interpretation", J of Geotech. Geoenviron. Eng., ASCE, 127(9) 783-789. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:9(783)
  9. Edil, T. B. and Bosscher, P. J. (1994), "Engineering properties of tire chips and soil mixtures", Geotechincal Testing J., 17(4), 453-464. https://doi.org/10.1520/GTJ10306J
  10. EPA (2007), Identifying, planning, and financing beneficial use projects using dredged material-Beneficial use planning manual, EPA842-B-07-001.
  11. Gabr, M.A. and Bowders, J. J. (2000), "Controlled low-strength material using fly ash and AMD sludge", J. of Hazardous Materials, 76 (2-3), 251-263. https://doi.org/10.1016/S0304-3894(00)00202-8
  12. Garga, V. K. and O'Shaughnessy, V. (2000), "Tire-reinforced earthfill. Part 1: Construction of a test fill, performance, and retaining wall design", Can. Geotech. J., 37(1). 75-96. https://doi.org/10.1139/t99-084
  13. Hardin, B. O. and Richart, F. E. (1963), "Elastic wave velocities in granular soils", J. of Soil Mechanics and Foundations, ASCE, 89(1), 33-65.
  14. Hardin, B. O. and Drnevich, V. P. (1972), "Shear modulus and damping in soils: measurement and parameter effects", J. of Soil Mechanics and Foundations Division, ASCE, 98(6), 603-624.
  15. Hertz, H. (1882), "Uber die Berührung fester elastischer Korper", J. Reine angewandte matematik, 92, 156-171.
  16. Humphrey, D. N. and Eaton, R. A. (1995), "Field performance of tire chips as subgrade insulation for rural roads", Proc., 6th Int. Conf. on Low-Volume Roads, 2, Transportation Research Board, Washington D.C., 77-86.
  17. Kim, B. J. and Prezzi, M. (2008), "Evaluation of the mechanical properties of class-F fly ash", Waste Management, 28(3), 649-659. https://doi.org/10.1016/j.wasman.2007.04.006
  18. Kim, Y. T., Kim, H. J., and Lee, G. H. (2008), "Mechanical behavior of lightweight soil reinforced with waste fishing net", Geotextiles and Geomenbranes, 26. 512-518. https://doi.org/10.1016/j.geotexmem.2008.05.004
  19. Kim, Y. T., Ahn, J., Han, W. J., and Gabr, M. A. (2010), "Experimental Evaluation of Strength Characteristics of Stabilized Dredged Soil", J. of Materials in Civil Eng. ASCE, 22(5). 539-544. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000052
  20. Kumar, S. and Stewart, J. (2003), "Evaluation of Illinois pulverized coal combustion dry bottom ash for use in geotechnical engineering applications", J. of Energy Engineering, 129(2), 42-55. https://doi.org/10.1061/(ASCE)0733-9402(2003)129:2(42)
  21. Krumbein, W. C., Sloss, L. L. (1963), Stratigraphy and Sedimentation, 2nd Edition, W. H. Freeman and Company, San Francisco.
  22. Lee, J. S., Dodds, J., and Santamarina, J. C. (2007), "Behavior of rigid-soft particle mixtures", J. of Materials in Civil Eng., ASCE, 19(2), 179-184. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:2(179)
  23. Lee, C., Truong, Q. H., Lee, W., and Lee, J. S. (2010), "Characteristics of Rubber-Sand Particle Mixtures according to Size Ratio", J. of Geotech. Geoenviron. Eng., ASCE, 22(4), 323-331.
  24. Mindlin, R. D. (1949), "Compliamce of elastic bodies in contact", J. of applied mechanics, September, 259-268.
  25. Mitchell, J. K. and Soga, K. (2005), Fundamentals of soil behavior, 3rd Edition, John Wiley & Sons, New Jersey.
  26. Pan, J. R., Huang, C., Kuo, J. J., and Lin, S.H. (2008), "Recycling MSWI bottom and fly ash as raw materials for Portland cement", Waste Management, 28(7), 1113-1118. https://doi.org/10.1016/j.wasman.2007.04.009
  27. Poh, P. S. H. and Broms, B. B. (1995), "Slope stabilization using old rubber tires and geotextiles", J. of Performance of Constructed Facilities, 9(1), 76-80. https://doi.org/10.1061/(ASCE)0887-3828(1995)9:1(76)
  28. Ramberg, W. and Osgood, W. R. (1943), "Description of stress-strain curves by three parameters", Technical Note No. 902, National Advisory Committee for Aeronautics, Washington DC.
  29. Rowe, R. K. and Mclsaac, R. (2005), "Clogging of tire shreds and gravel permeated with landfill leachate", J. of Geotech. Geoenviron. Eng., ASCE, 131(6), 682-693. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:6(682)
  30. Rubber Manufacturers Association (2006), Scrap tire markets in the United States 2005 Edition.
  31. Santamarina, J. C., Klein, K. A., and Fam, M. A. (2001), Soils and Waves - Particulate Materials Behavior, Characterization and Process Monitoring. John Wiley & Sons. New York.
  32. Singh, S. P., Tripathy, D. P., and Ranjith, P. G. (2008), "Performance evaluation of cement stabilized fly ash-GBFS mixes as a highway construction material", Waste Management, 28(8), 1331-1337. https://doi.org/10.1016/j.wasman.2007.09.017
  33. Tsuchida, T., Takeuchi, D., Okumura, T., and Kishida, T. (1996), "Development of lightweight fill from dredging", Proc. of Environmental Geotechnics, Balkema, 415-420.
  34. Tweedie, J. J., Humphrey, D. N., and Sandford, T. C. (1998), "Tire shreds as lightweight retaining wall backfill: active conditions", J. of Geotech. Geoenviron. Eng., ASCE, 124(11), 1061-1070. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:11(1061)
  35. Vucetic, M. (1994), "Cyclic threshold shear strains in soils", J. of Geotechnical Engineering, ASCE, 120(12), 2208-2228. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:12(2208)
  36. Vucetic, M. and Dobry, R. (1991), "Effect of soil plasticity on cyclic response", J. of Geotechnical Engineering, ASCE, 117(1), 89-107. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(89)
  37. Yoon, G. L., Jeon, S. S., and Kim, B. T. (2004), "Mechanical characteristics of light-weighted soils using dredged materials", Marine Georesources & Geotechnology, 22(4), 215-229. https://doi.org/10.1080/10641190490467747
  38. Youwai, S. and Bergado, D. (2003), "Strength and deformation characteristics of shredded rubber tire-sand mixtures", Can. Geotech. J., 40(2), 254-264. https://doi.org/10.1139/t02-104