• Title/Summary/Keyword: Stiffness Modulus

Search Result 486, Processing Time 0.025 seconds

Virtual Experimental Characterization of 3D Orthogonal Woven Composite Materials (직교 직물 복합재료 물성치 예측을 위한 가상 수치 실험)

  • Lee, Chang-Sung;Shin, Hun;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.205-210
    • /
    • 2001
  • In this work, virtual material characterization of 3D orthogonal woven composites is performed to predict the elastic properties by a full scale FEA. To model the complex geometry of 3D orthogonal woven composites, an accurate unit structure is first prepared. The unit structure includes warp yarns, filler yarns, stuffer yams and resin regions and reveals the geometrical characteristics. For this virtual experiments by using finite element analysis, parallel multifrontal solver is utilized and the computed elastic properties are compared to available experimental results and the other analytical results. It is founded that a good agreement between material properties obtained from virtual characterization and experimental results. Using the method of this virtual material characterization, the effects of inconsistent filler yarn distribution on the in-plane shear modulus and filler yarn waviness on the transverse Young's modulus are investigated. Especially, the stiffness knockdown of 3D woven composite structures is simulated by virtual characterization. Considering these results, the virtual material characterization of composite materials can be used for designing the 3D complex composite structures and may supplement the actual experiments.

  • PDF

Development of Reinforced Wood Beams Using Polymer Mortar (폴리모 모르터를 이용한 강화목재보의 개발)

  • 연규석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.79-86
    • /
    • 1990
  • Based on limited number of tests on reinforced wood beams using polymer mortar in this study, following conclusions were drawn ; 1.Reinforcing compression side of wood beam using polymer mortar was effective in reducing deflection. 2.By increasing thickness of polymer mortar, effective beam stiffness was improved, but energy absorption was reduced. 3.Polymer mortar reinforcement improved compressive strength and reduced strain in compression side of the beam. Therefore, it was possible to change the failure mode from by compression in control beam to by tension in composite beams. 4.The composite beams that have more than 2cm of polymer mortar layer did not perform well because a strain redistribution and separation of meterials at interface were induced in moment span. 5.To maximize the load carrying capacity of composite beam, it is necessary to make polymer mortar and wood behave together without failing at interface. To do this, it is needed to use a polymer mortar which has high strength with such elastic modulus that is closer to elastic modulus of wood. otherwise, it is recommended to use shear connectors at interface to prevent separation of materials under ultimate load.

  • PDF

Molecular Dynamics Study on Mechanical Behavior and Load Transfer of CNT/PET Nanocomposites : the Effects of Covalent Grafting (탄소나노튜브/폴리에스터 복합재의 역학적 거동과 하중전달에 관한 분자 동역학 전산모사 : 그래프팅 가공의 영향)

  • Jin, Juho;Yang, Seunghwa
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.193-201
    • /
    • 2017
  • Molecular dynamics simulation and the Mori-Tanaka micromechanics study are performed to investigate the effect of the covalent grafting between CNT and polyester on the mechanical behavior and load transfer of nanocomposites. The transversely isotropic stress-strain curves are determined through the tension and shear simulations according to the covalent grafting. Also, isotropic properties of randomly dispersed nanocomposites are obtained by orientation averaging the transversely isotropic stiffness matrix. By addressing the grafting, the transverse Young's modulus and shear moduli of the nanocomposites are improved, while the longitudinal Young's modulus decreases due to the degradation of the grafted CNT.

Determination of Effective Buckling Length of Plane Frames using Elastic and Inelastic System Buckling Analysis (탄성 및 비탄성 좌굴 고유치해석을 이용한 강뼈대구조의 유효좌굴길이)

  • Song, Ju-Young;Kyung, Yong-Soo;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.169-179
    • /
    • 2005
  • An improved method for evaluating effective buckling lengths of beam-column members in plane frames is newly proposed based on system inelastic buckling analysis. To this end, the tangent stiffness matrix of be am-column elements is first calculated using stability functions and then the inelastic buckling analysis method is presented. The scheme for determining effective length of individual members is also addressed. Design examples and numerical results ?uc presented to show the validity of the proposed method.

Effect of Moisture Contents and Density of Paulownia tomentosa on Acoustical Properties (함수율과 밀도가 참오동나무재의 음향 특성에 미치는 영향)

  • Yoo, Tae-Kyung;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.61-66
    • /
    • 1997
  • Paulownia wood has been used as sound board for Korean traditional musical instruments such as Keomungo(Korean lute), Kayagum(twelve-stringed Korean harp) and Changgu(hour-glass shaped drum), etc. The acoustic properties of wood affected not only by dimensions but also by density and stiffness of wood. Due to inhomogeneity and hygroscopicity of wood. the acoustic properties of wood are inconsistent. To clarify the effect of moisture content and air dry density on acoustic properties, longitudinal vibration experiment was accomplished in 3 moisture content levels of 9.6, 11.1 and 12.5% and in 3 air dry density levels of 0.22, 0.25 and 0.28g/$cm^3$. The results were as follows: As the moisture content increased, the fundamental frequency. specific dynamic Young's modulus and sound velocity decreased, but the internal friction increased so that loss of energy increased. The values in damping of sound radiation were rapidly decreased at 12.5%. It meant that the damping of internal friction was larger than damping of sound radiation at high moisture content. As the air dry density increased, the fundamental frequency, specific dynamic Young's modulus and sound velocity increased, but the internal friction and damping of sound radiation decreased so that loss of energy decreased. And acoustic converting efficiency was hardly influenced by increasing air drying density.

  • PDF

Evaluations of the Acoustics Characteristics of Cellulose Absorbers (셀롤로오즈 흡음재의 음향적 특성 평가)

  • Yeon, Joon-oh;Kim, Kyoung-woo;Yang, Kwan-seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.760-765
    • /
    • 2013
  • Eco-friendly material applied to building would be one of the materials which is must developed for global environmental conservation and reduction of carbon dioxide. For development of eco-friendly material, a cellulose sound-absorbing material has been developed with waste paper through adjustment of various mix proportions. The developed cellulose sound-absorbing material has been tested for its acoustic properties such as acoustic absorptivity and dynamic elastic modulus. The absorptivity was evaluated by developing six samples and using impedance tube and reverberation chamber. As a result of the evaluation, 0.64(NRC) was secured in absorptivity and $4.7MN/m^3$ was indicated in dynamic elastic modulus. Also, for practical use of developed sound-absorbing material as inner heartwood in drywall, comparison test of sound reduction index was performed with existing glass wool sound-absorbing material and constructed drywall of gybsum board. The results have shown 55dB(Rw) of sound reduction index in glass-wool wall and 46dB(Rw) in cellulose.

  • PDF

Relationship between Stiffness and Shear Strength of Normally Consolidated Clay using Triaxial Compression Tests and Shear Wave Measurements (삼축압축시험과 전단파 계측을 이용한 정규압밀 점성토의 강성도와 전단강도의 상관관계)

  • Oh, Sang-Hoon;Kim, Hak-Sung;Kim, Eun-Jung;Park, In-Beom;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1124-1131
    • /
    • 2008
  • Thanks to a new in-situ seismic probe, using bender elements and penetration scheme, a simple linear relationship between undrained shear strength(Cu) and shear wave velocity(Vs) was obtained. This priceless relationship is worthy to be illuminated further in ideal laboratory environment. To avoid sampling disturbance effect, special consolidation cylinders were used to make normally consolidated specimens from kaolinite suspension. The undrained shear strengths of the specimens were measured using unconsolidated undrained triaxial compression tests. Also shear wave velocity measurements were performedprior to shearing the same specimens, using the bender elements installed in the base pedestal and the top cap of the triaxial compression cell. The Cu-Vs relationship is fairly linear and supports the linear trend of clayey silt obtained using field testing. Also the classic density-shear modulus relationship for soft clay proposed by Hardin and Black(1969) was once more verified hereby.

  • PDF

Investigation of the link beam length of a coupled steel plate shear wall

  • Gholhaki, M.;Ghadaksaz, M.B.
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.107-125
    • /
    • 2016
  • Steel shear wall system has been used in recent years in tall buildings due to its appropriate behavior advantages such as stiffness, high strength, economic feasibility and high energy absorption capability. Coupled steel plate shear walls consist of two steel shear walls that are connected to each other by steel link beam at each floor level. In this article the frames of 3, 10, and 15 of (C-SPSW) floor with rigid connection were considered in three different lengths of 1.25, 2.5 and 3.75 meters and link beams with plastic section modulus of 100% to the panel beam at each floor level and analyzed using three pairs of accelerograms based on nonlinear dynamic analysis through ABAQUS software and then the performance of walls and link beams at base shear, drift, the period of structure, degree of coupling (DC) and dissipated energy evaluated. The results show that the (C-SPSW) system base shear increases with a decrease in the link beam length, and the drift, main period and dissipated energy of structure decreases. Also the link beam length has different effects on parameters of coupling degrees.

Study on the Performance Evaluation of CS-H Wall composed of Steel Fiber (강섬유를 이용한 CS-H 벽체의 성능 평가에 관한 연구)

  • YU, Nam-Jae;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.89-96
    • /
    • 2017
  • In this study, CS-H walls with large stiffness were constructed using geosythetics for use in excavation at a depth of 30 m or more in Korea, and in order to construct the CS-H wall suitable for the site conditions, the formulation was examined according to the change in the mixing ratio of the geosythetics and the slump value (slump flow) and as a result, in the target slump 180 mm and the slump flow 500 mm, the formulation was confirmed to meet the mechanical properties such as the initial bending strength, the long-term behavior, and the elastic modulus as well as the economic efficiency. However, in the slump flow 600 mm, the result indicated that the formulation was inappropriate in the mechanical properties such as the initial bending strength, the long-term behavior, and the elastic modulus.

Correlation between the Properties of Superpave Binder and Engineering Properties of Recycled Aged CRM Mixtures (재생 CRM 바인더와 혼합물의 성능 상관성 연구)

  • Kim, Hyun Hwan;Jeong, Kyu Dong;Lee, Moon Sup;Lee, Soon Jae
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2016
  • PURPOSES : The performance properties (indirect tensile strength, rutting resistance, and resilient modulus) of recycled aged CRM mixtures and their correlation with Superpave binder properties (viscosity, high failure temperature, $G^*sin{\delta}$, and stiffness) were investigated. METHODS: A series of Superpave binder tests was performed by using a rotational viscometer, DSR, and BBR to evaluate the performance properties. In addition, the CRM mixes were artificially aged through accelerated aging processes, and their properties were evaluated. The correlation between the properties of recycled aged CRM binders and the engineering properties of recycled aged CRM mixtures was experimentally determined. RESULTS : The rut depth values decreased and the ITS values increased with increasing high failure temperature. In general, the resilient modulus properties seemed to be poorly correlated with the high-temperature values, regardless of the aggregate source. CONCLUSIONS: The recycled aged CRM binders and mixtures can lead to satisfactory performance, and the properties of these binders are strongly correlated with the engineering properties of the mixtures.