• Title/Summary/Keyword: Sterilization Gas

Search Result 69, Processing Time 0.026 seconds

Microbial Differentiation and its Biochemical Bases (미생물의 분화와 그 생화학적 기구)

  • 김종협
    • Korean Journal of Microbiology
    • /
    • v.11 no.2
    • /
    • pp.101-106
    • /
    • 1973
  • The microwave of 2450 MHz, generated by a household cooking oven, was evaluated for its applicability to melt various rehydrated media and to remove dissolved oxygen from tubed media for anaerobic culture. The effect on the sterilization of E. coli in selective media was also evaluated. The following results were obtained. 10 The microwave oven was useful in saving time for melting media and in eliminating heat and combustion gas from the laboratory, which were inevitable by-products in the conventional flame method. 2) Dissolved oxygen could be removed without boiling over by exposing the tubes of anaerobic culture medium after putting them in a wire basket in a beaker with water. 30 The count of E. coli during the melting of MacConkey and EMB agar were similar to those treated with open flame. The microwave treatment was not considered a possible mean to replace autoclaving even in these selective media.

  • PDF

A lower cost method of preparing corn stover for Irpex lacteus treatment by ensiling with lactic acid bacteria

  • Zuo, Sasa;Jiang, Di;Niu, Dongze;Zheng, Mingli;Tao, Ya;Xu, Chuncheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.8
    • /
    • pp.1273-1283
    • /
    • 2020
  • Objective: This study investigated a method of preparing corn stover for Irpex lacteus (I. lacteus) treatment to improve its in vitro rumen degradability under non-sterile conditions. Methods: Corn stover was inoculated with Lactobacillus plantarum (L. plantarum), Lactobacillus buchneri (L. buchneri), and an equal mixture of these strains, and ensiled for 0, 3, 7, 14, and 28 days. After each period, a portion of the silage was sampled to assess the silage quality, and another portion of the silage was further treated with I. lacteus at 28℃ for 28 d. All the samples were analyzed for fermentation quality, chemical composition, and in vitro gas production (IVGP) as a measure of rumen fermentation capacity. Results: Lactic acid bacteria (LAB) was found to improve the silage quality of the corn stover, and the corn stover silage inoculated with L. plantarum produced more lactic acid and higher IVGP than other silage groups. The I. lacteus colonies flourished in the early stage of corn stover silage, especially on the 3-d corn stover silage inoculated with both L. plantarum and L. buchneri. This led to an 18% decrease in the acid detergent lignin content, and a 49.6% increase in IVGP compared with the raw stover. Conclusion: The combination of ensiling with the mixed LAB inoculation and I. lacteus treatment provided a cost-effective method for the improvement of the IVGP of corn stover from 164.8 mL/g organic matter (OM) to 246.6 mL/g OM.

A Study on the Safety of Alcohol-based Hand Sanitizers (알코올을 주성분으로 하는 손소독제의 안전성 연구)

  • Sun-Ok Jung;Chun-Yeong Lee;Hoe-Jin Ryu;Hee-Jin Choi;Ji-Young Kim;Chae-Man Choi;In-Sook Hwang;Yong-Seung Shin
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.1
    • /
    • pp.34-39
    • /
    • 2023
  • Objectives: In this study, the safety of alcohol-based hand sanitizers (ABHSs) for quasi-drugs and cosmetics was investigated by analyzing the ethanol content, which is an active ingredient with a sterilizing effect, and methanol, which is toxic. Methods: Forty-one ABHSs were purchased at large supermarkets and online stores. Ethanol quantification was performed by gas chromatography-flame ionization detector, and methanol quantification was performed by headspace-gas chromatography-mass spectrometry. Results: The ethanol content of ABHS in quasi-drugs was 49.6-67.8%, which was suitable for standard manufacturing procedures for external disinfectants, and the ethanol content of ABHS in cosmetics was 9.1-61.3%. The methanol content of ABHS in quasi-drugs ranged from not detected(N.D.)-131.8 ppm, which was suitable for the methanol detection standard of ethanol raw materials in the Korean Pharmacopoeia. The methanol content of ABHS in cosmetics was 23.4-859.7 ppm, which was suitable for the detection limit of methanol in cosmetics. Conclusions: The ethanol and methanol content of ABHS was judged to be safe. When selecting an ABHS to be used for sterilization, it seems necessary to check the content of ethanol, an active ingredient, and use it according to its intended purpose.

Optical Diagnostics of Nanopowder Processed in Liquid Plasmas

  • Bratescu, M.A.;Saito, N.;Takai, O.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.17-18
    • /
    • 2011
  • Plasma in liquid phase has attracted great attention in the last few years by the wide domain of applications in material processing, decomposition of organic and inorganic chemical compounds and sterilization of water. The plasma in liquid is characterized by three main regions which interact each - other during the plasma operation: the liquid phase, which supply the plasma gas phase with various chemical compounds and ions, the plasma in the gas phase at atmospheric pressure and the interface between these two regions. The most complex region, but extremely interesting from the fundamental, chemical and physical processes which occur here, is the boundary between the liquid phase and the plasma gas phase. In our laboratory, plasma in liquid which behaves as a glow discharge type, is generated by using a bipolar pulsed power supply, with variable pulse width, in the range of 0.5~10 ${\mu}s$ and 10 to 30 kHz repetition rate. Plasma in water and other different solutions was characterized by electrical and optical measurements. Strong emissions of OH and H radicals dominate the optical spectra. Generally water with 500 ${\mu}S/cm$ conductivity has a breakdown voltage around 2 kV, depending on the pulse width and the repetition rate of the power supply. The characteristics of the plasma initiated in ultrapure water between pairs of different materials used for electrodes (W and Ta) were investigated by the time-resolved optical emission and the broad-band absorption spectroscopy. The deexcitation processes of the reactive species formed in the water plasma depend on the electrode material, but have been independent on the polarity of the applied voltage pulses. Recently, Coherent anti-Stokes Raman Spectroscopy method was employed to investigate the chemistry in the liquid phase and at the interface between the gas and the liquid phases of the solution plasma system. The use of the solution plasma allows rapid fabrication of the metal nanoparticles without being necessary the addition of different reducing agents, because plasma in the liquid phase provides a reaction field with a highly excited energy radicals. We successfully synthesized gold nanoparticles using a glow discharge in aqueous solution. Nanoparticles with an average size of less than 10 nm were obtained using chlorauric acid solutions as the metal source. Carbon/Pt hybrid nanostructures have been obtained by treating carbon balls, synthesized in a CVD chamber, with hexachloro- platinum acid in a solution plasma system. The solution plasma was successfully used to remove the template remained after the mesoporous silica synthesis. Surface functionalization of the carbon structures and the silica surface with different chemical groups and nanoparticles, was also performed by processing these materials in the liquid plasma.

  • PDF

Virus Inactivation Processes for the Manufacture of Human Acellular Dermal Matrix (인체이식용 무세포 진피 제조를 위한 바이러스 불활화 공정)

  • Bae, Jung-Eun;Kim, Jin-Young;Ahn, Jae-Hyoung;Choi, Da-Mi;Jeong, Hyo-Sun;Lee, Dong-Hyuck;Kim, In-Seop
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.2
    • /
    • pp.168-176
    • /
    • 2010
  • Acellular dermal matrix (ADM), produced by decellularization from human cadaveric skin, has been used for various biomedical applications. A manufacturing process for ADM ($SureDerm^{TM}$) using tri-n-butyl phospahate (TnBP) and deoxycholic acids as the decellularization solution has been developed. The manufacturing process for $SureDerm^{TM}$ has 70% ethanol treatment and ethylene oxide gas sterilization for inactivating infectious microorganisms. The purpose of this study was to examine the efficacy of the 70% ethanol treatment, decellularization process using 0.1% TnBP and 2% deoxycholic acids, and EO gas sterilization process in the inactivation of viruses. A variety of experimental model viruses for human pathogens, including the human immunodeficiency virus type 1 (HIV-1), bovine herpes virus (BHV), bovine viral diarrhoea virus (BVDV), hepatitis A virus (HAV), and porcine parvovirus (PPV) were all selected for this study. Enveloped viruses such as HIV-1, BHV, and BVDV were effectively inactivated to undetectable levels by 70% ethanol treatment. However HAV and PPV showed high resistance to 70% ethanol treatment with the log reduction factors of 1.85 and 1.15, respectively. HIV-1, BHV, and BVDV were effectively inactivated to undetectable levels by decellularization process. All the viruses tested were completely inactivated to undetectable levels by EO gas treatment. The cumulative log reduction factors of HIV-1, BHV, BVDV, HAV, and PPV were $\geq12.71$, $\geq18.08$, $\geq14.92$, $\geq6.57$, and $\geq7.18$, respectively. These results indicate that the production process for $SureDerm^{TM}$ has a sufficient virus-reducing capacity to achieve a high margin of the virus safety.

Effect of Chlorine Dioxide, Cold Plasma Gas Sterilization and MAP Treatment on the Quality and Microbiological Changes of Paprika During Storage (이산화염소 및 저온 플라즈마 가스 살균 및 MAP 처리가 파프리카의 저장 중 품질과 미생물학적 변화에 미치는 영향)

  • In-Lee, Choi;Joo Hwan, Lee;Yong Beom, Kwon;Yoo Han, Roh;Ho-Min, Kang
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.223-229
    • /
    • 2022
  • This study was conducted to investigate the effect of packaging methods and sterilization treatment on storability and microbial control in paprika fruits. When treated with chlorine dioxide gas for 3, 6, and 12 hours and cold plasma gas for 1, 3, and 6 hours, and then packed in a carton box and stored in a 8 ± 1℃ chamber for 7 days, chlorine dioxide treated 12 hours and plasma treated 6 hours was prevented the development of E·coli and YM(yeast and mold). Accordingly, the control was treated with chlorine dioxide for 12 hours and plasma for 6 hours, packed using a carton box and 40,000 cc·m-2·day-1·atm-1 OTR film (MAP), and stored in a 8 ± 1℃ chamber for 20 days. Fresh weight loss rate during storage was less than 1% in the MAP treatments, and the visual quality of the MAP treatments was above the marketability limit until the end of storage. There was no difference in the contents of oxygen, carbon dioxide, and ethylene in the film. In the case of firmness, the chlorine dioxide treatments was low, and the Hunter a* value, which showed chromaticity, was highest in the Plasma 6h MAP treatment. Off-odor was investigated in the MAP treatments, but it was very low. The rate of mold growth on the fruit stalk of paprika was the fastest and highest in the chlorine dioxide treated box packaging treatments, and the lowest in the chlorine dioxide treated MAP treatments at the end of storage. The aerobic count in the pulp on the storage end date was the lowest in the plasma treated box packaging treatments, the lowest number of E·coli in the chlorine dioxide treated MAP treatments, and the lowest yeast & mold in the chlorine dioxide treated box packaging treatments. As a result, for the inhibition of microorganisms during paprika storage, it is considered appropriate to treat plasma for 6 hours before storage regardless of the packaging method.

Plasma Medicine: How can Nonthermal Atmospheric Plasma be Applied to Medicine? (플라즈마 메디신: 저온 상압 플라즈마는 어떻게 의학분야에 적용될 수 있는가?)

  • Park, Sang Rye;Hong, Jin Woo;Lee, Hae June;Kim, Gyoo Cheon
    • Journal of Life Science
    • /
    • v.23 no.6
    • /
    • pp.838-846
    • /
    • 2013
  • As a forth state of material, plasma is ionized gas, which generates characteristically various reactive species. After late of $20^{th}$ century, plasma has been widely used in industry. After nonthermal atmospheric plasma was developed, it has been applied to biomedical fields. Nonthermal atmospheric plasma does not give thermal damages to human tissues, and it shows the high efficiency in cancer treatment, sterilization, tooth bleaching, coagulation, and wound healing. Because the application of plasma to biomedicine has been expanded through interdisciplinary studies, its value of high medical technology is increasing now. Since nonthermal atmospheric plasma was first applied to the mammalian cells and microorganisms, many valuable studies has been performed for about last 10 years, so that now the new research area called 'plasma medicine' has been formed. This article introduces the recent data resulted from plasma medicine and helps to understand the plasma medicine.

The PWM Control Which used Microprocessor for Intensity Control of Acid Ion Water (산성이온수 농도제어를 위한 Microprocessor를 이용한 PWM 제어)

  • Kwon, Yunjung;Nam, Sangyep
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.269-274
    • /
    • 2013
  • We are used with the alkaline ion water which an application field does to object for drinking water compare with the alkaline ion water which asked ion acid electrolysis so as to be very different. This is used with sterilization disinfection use by residual chlorine in case of strong acidity according to ph intensity, and in case of middle acidity use by washing and face washing, and mix with meal materials in case of weak acidity widely usable in cooking. Acid ion water generates as we electrolyze water. Chlorine gas and sodium hydroxide etc. was generated at electrolysis process, and we have toward sterilizing power. Derelicts such as chlorine, phosphorus, sulfur etc. are gathered from a negative ion, and we make acid ion water to + electrode direction in electrolysis. We used a diaphragm in order to disconnect too acid water and alkaline water. We implemented so that the acid water which it came down to three kinds of PWM voltage to PWM (pulse width modulation) control, and implementation method of ph intensity change authorized ph intensity between weak acidity to electrode in strong acidity as we used Microprocessor, and intensity was adjusted successively by PWM control was generated.

A study on the state of infection control in dental clinic (치과진료실에서의 감염관리 실태 조사)

  • Kim, Kyung-Mi;Jung, Jae-Yeon;Hwang, Yoon-Sook
    • Journal of Korean society of Dental Hygiene
    • /
    • v.7 no.3
    • /
    • pp.213-230
    • /
    • 2007
  • The purpose of this study was to examine the state of infection control provided to members of Korean Dental Hygienists Association. The subjects in this study were dental hygienists who attended a symposium on July 1. 2006. after a survey was conducted, the answer sheets from 489 participants were analyzed, and the findings of the study were as follows: 1. Possession of disinfection room was being(72.7%), and person of infection control was zero(52.9%). Number of sterilizer was one(62.2%). 2. As a repetition choice, type of sterilizer was autoclave(97.9%), UV sterilizer(67.4%) and EO gas sterilizer(21.4%). As a repetition choice, infection materials was ethanol(84.1%). 3. Water tube of unit and chair was using of sterilized water(42.9%). Sterilizing of compressed air was no(69.0%). 4. Re-using of disposal was not using(62.5%), re-using disposal was suction tip(28.2%)(repetition choice) 5. In sterilization of instruments, hand-piece was every using time(28.4%), and reamer-file, bur, mirror, pincette, explorer, hand scaler and ultrasonic scaler were high in every using time. 6. Individual protection was high of using, cleaning of hands before treatment was every treatment(87.0%). Type of soap was liquid type in dental clinic(48.2%), infection soap in dental hospital(41.2%) and solid soap in public health center(50.6%). Answered that they need regular oral health education, and 82.9% respondents answered that they need oral health technicians in school. And 87.8% respondents needed individual oral health education for the benefit of better oral health.

  • PDF

SEM STUDY ON THE BACTERIAL ADHESION TO THE DENTIN OF THE ROOT CANAL (미생물의 근관내 상아질 부착에 대한 주사전자현미경적 연구)

  • Jeong, Sang-Kyun;Oh, Tae-Seok;Bae, Kwang-Shik
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.1
    • /
    • pp.116-122
    • /
    • 2000
  • On the instrumented root canal wall, amorphous, irregular smear layer can be observed with Scanning Electron Microscope(SEM). The purpose of this study was to evaluate the effect of the presence or absence of smear layer on the adhesion of Staphylococcus aureus to the dentin of the root canal. Human incisors, extracted within 7 days, with no caries, no fracture, no calcification of canal, were selected. After cutting crown portion at cemento-enamel junction, root canal preparation was done by modified crown-down technique using Profile and Gates - Glidden Drill. During canal preparation, 10ml physiologic saline solution(group1&3) or 10ml 3.5% NaOCl(group2&4) was used as irrigation solution. And 10ml physiologic saline solution(group1&3) or 10ml 0.5M EDTA(group2&4) was applicated for final flush. After vertical sectioning and ethylene oxide gas sterilization, samples(group1&2) were immersed into BHIYHM broth inoculated with Staphylococcus aureus (ATCC 31153) and incubated for 3hrs at $37^{\circ}C$. All samples were prepared for and observed with SEM(JEOL JSM840S). The data were analyzed by Mann-Whitney rank sum test. The conclusions are as follows ; 1. Smear layer covers entire root canal surface after root canal preparation. 2. Smear layer has been removed away and the entrances of dentinal tubules have opened widely, when applying 0.5M EDTA and 3.5% NaOCl. 3. A significantly higher number of bacteria were adhered to the root canal dentin without smear layer(p<0.0001). 4. Smear layer produced during root canal preparation impedes bacterial adhesion and colonization to dentin matrix, therefore inhibits canal reinfection.

  • PDF