KSII Transactions on Internet and Information Systems (TIIS)
/
제11권6호
/
pp.3208-3229
/
2017
Rectification is an essential procedure for simplifying the disparity extraction of stereo matching algorithms by removing vertical mismatches between left and right images. To support real-time stereo matching, studies have introduced several look-up table (LUT)- and computational logic (CL)-based rectification approaches. However, to support high-resolution images, the LUT-based approach requires considerable memory resources, and the CL-based approach requires numerous hardware resources for its circuit implementation. Thus, this paper proposes a multi-level accumulation-based rectification method as a simple CL-based method and its circuit implementation. The proposed method, which includes distortion correction, reduces addition operations by 29%, and removes multiplication operations by replacing the complex matrix computations and high-degree polynomial calculations of the conventional rectification with simple multi-level accumulations. The proposed rectification circuit can rectify $1,280{\times}720$ stereo images at a frame rate of 135 fps at a clock frequency of 125 MHz. Because the circuit is fully pipelined, it continuously generates a pair of left and right rectified pixels every cycle after 13-cycle latency plus initial image buffering time. Experimental results show that the proposed method requires significantly fewer hardware resources than the conventional method while the differences between the results of the proposed and conventional full rectifications are negligible.
본 논문에서는 스테레오 영상의 대응점을 찾기 위한 영역 기반 스테레오 정차 기법을 제안한다. 영역 기반 스테레오 정합의 주된 문제점은 윈도우 크기에 따라 다른 결과를 초래한다는 것이다. 지금까지 대부분의 영역기반 정합 기법은 윈도우의 크기를 반복적으로 갱신하는 방법을 사용하였으나, 이는 초기 시차(disparity)에 매우 민감하며 계산 비용도 많이 든다. 이러한 문제를 해결하기 위해, 본 논문에서는 스테레오 영상의 특징 정보를 이용하여 가중치를 생성하고, 각 영상의 대응점을 탐색하여 정합한다. 먼저, 평행하게 설치된 두 대의 카메라로부터 획득된 영상에 대한 에지를 검출하여 특징점을 추출한다. 이를 이용하여 두 영상간의 상관관계를 구하여 가중치 함수를 생성하고, 각 영상에 대한 가중치를 적용한 후, 기준영상에 대한 대응점을 찾아 정합한다. 제안된 방법의 성능을 평가하기 위하여 ground truth가 존재하는 다양한 스테레오 영상을 이용하여 실험하였으며, 실험결과 다양한 영상에서도 적응적인 가중치를 생성함으로써 향상된 결과를 보였다.
An active research area in computer vision, stereo matching is aimed at obtaining three-dimensional (3D) information from a stereo image pair captured by a stereo camera. To extract accurate 3D information, a number of studies have examined stereo matching algorithms that employ adaptive support weight. Among them, the adaptive census transform (ACT) algorithm has yielded a relatively strong matching capability. The drawbacks of the ACT, however, are that it produces low matching accuracy at the border of an object and is vulnerable to noise. To mitigate these drawbacks, this paper proposes and analyzes the features of an improved stereo matching algorithm that not only enhances matching accuracy but also is also robust to noise. The proposed algorithm, based on the ACT, adopts the truncated absolute difference and the multiple sparse windows method. The experimental results show that compared to the ACT, the proposed algorithm reduces the average error rate of depth maps on Middlebury dataset images by as much as 2% and that is has a strong robustness to noise.
This paper describes and automatic mirror adjustment system that rotates a pair of side mirrors and the room mirror of a car to the optimal position for a driver by using the locating of the driver\`s pupils. A stereo vision system measures 3D coordinates of a pair pupils by analyzing the input images of stereo B/W CCD cameras mounted on the instrument panel. this system determines the position angle of each mir-ror on the basis of information about the location of the pupils and rotates each mirror to the appropriate po-sition by mirror actuators. The vision system can detect the driver\`s pupils regardless of whether it is day-time or nighttime by virtue of an infrared light source. information about the pair of nostrils in used to im- prove the correctness of pupil detection. This system can adjust side mirrors and the room mirror automati- cally and rapidly by a simple interface regardless of driver replacement of driver\`s posture. Experiment has shown this to be a new mirror adjustment system that can make up for the weak points of previous mirror adjustment systems.
This paper describes an intelligent mirror adjustment system that rotates a pair of side mirrors and the room mirror of a car to the optimal position for a driver by using the location of the driver's pupils. A stereo vision system measures the three-dimensional coordinates of a pair of pupils by analyzing the input images of stereo B/W CCD cameras mounted on the instrument panel. This system determines the position angle of each mirror on the basis of information about the location of the pupils and rotates each mirror to the appropriate position by mirror actuators. The vision system can detect the driver's pupils regardless of whether it is daytime or nighttime by virtue of an infrared light source. Information about the pair of nostrils is used to improve the correctness of pupil detection. This system can adjust side mirrors and the room mirror automatically and rapidly by a simple interface regardless of driver replacement or driver's posture. Experiment has shown this to be a new mirror adjustment system that can make up for the weak points of previous mirror adjustment systems.
컴퓨터 보조의 3차원 수술지원시스템(CAS. Computer Assisted Surgery)의 3차원 위치검출을 위한 광학식 추적자(Optical Tracker)에서 수술도구에 장착되는 적외선 LED의 좌우 영상을 CCD 카메라로 획득하는 데 있어서 기존의 2개의 프레임그래버를 이용하는 방법을 개선하여 하나의 그래버로 획득하는 방법을 개발하였다 좌우의 영상은 칼라 프레임그래버의 색차신호로 부가되며 이에 관련된 하드웨어 및 검출 알고리즘을 개발하였다 결과적으로 본 연구에서 개발된 방법은 비용이 절감되며 좌우영상의 추출이 빠른 것이 장점이다
We have tried to create a vision system like human eye for a long time. We have obtained some distinguished results through many studies. Stereo vision is the most similar to human eye among those. This is the process of recreating 3-D spatial information from a pair of 2-D images. In this paper, we have designed a stereo matching algorithm based on systolic array architecture using edges and pixel data. This is more advanced vision system that improves some problems of previous stereo vision systems. This decreases noise and improves matching rate using edges and pixel data and also improves processing speed using high integration one chip FPGA and compact modules. We can apply this to robot vision and automatic control vehicles and artificial satellites.
This study addresses a photogrammetric approach to generate Mars topographic products from mapping data of Mars Global Surveyor (MGS). High-resolution stereo images and laser altimetry data collected from the MGS mission are combined and processed to produce Digital Elevation Models (DEM) and orthoimages. First, altimeter data is registered to high resolution images and considerable registration offset (around 325 m) is discovered on high resolution stereo images. Altimetry data, exterior orientation elements of the camera and conjugate points are used for bundle adjustment to solve this mis-registration and detennine the ground coordinates. The mis-registration of altimetry data are effectively eliminated after the bundle adjustment. Using the adjusted exterior orientation the ground coordinates of conjugate points are detennined. A sufficient number of corresponding points collected through image matching and their precise 3-D ground coordinates are used to generate DEM and orthoimages. A posteriori standard deviations of ground points after bundle adjustment indicate the accuracy of OEM generated in this study. This paper addresses the photogrammetric procedure: the registration of altimetry data to stereo pair images, the bundle adjustment and the evaluation, and the generation of OEM and orthoimages.
KSII Transactions on Internet and Information Systems (TIIS)
/
제5권9호
/
pp.1613-1631
/
2011
Several metrics have been reported in the literature to assess stereo image quality, mostly based on visual attention or human visual sensitivity based distortion prediction with the help of disparity information, which do not consider the combined aspects of human visual processing. In this paper, visual attention and depth assisted stereo image quality assessment model (VAD-SIQAM) is devised that consists of three main components, i.e., stereo attention predictor (SAP), depth variation (DV), and stereo distortion predictor (SDP). Visual attention is modeled based on entropy and inverse contrast to detect regions or objects of interest/attention. Depth variation is fused into the attention probability to account for the amount of changed depth in distorted stereo images. Finally, the stereo distortion predictor is designed by integrating distortion probability, which is based on low-level human visual system (HVS), responses into actual attention probabilities. The results show that regions of attention are detected among the visually significant distortions in the stereo image pair. Drawbacks of human visual sensitivity based picture quality metrics are alleviated by integrating visual attention and depth information. We also show that positive correlation with ground-truth attention and depth maps are increased by up to 0.949 and 0.936 in terms of the Pearson and the Spearman correlation coefficients, respectively.
This paper presents a new method to extract traffic information such as number of passing vehicles and average speed by a pair of stereo road images. The whole process consists of the extraction of vehicles and the tracking of the extracted vehicles. For the extraction of vehicles, the outline of each vehicle is obtained by using binary region growing technique applied to disparity map based on multi-resolution stereo matching. The Kalman filter tracking algorithm is applied to the extracted vehicle outlines to determine the flow of vehicles. Experimental results show that the proposed method significantly improved recognition rate of vehicles over the conventional methods-frame difference and background elimination methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.