• Title/Summary/Keyword: Step-by-step Split

Search Result 87, Processing Time 0.034 seconds

A Study on Split Variable Selection Using Transformation of Variables in Decision Trees

  • Chung, Sung-S.;Lee, Ki-H.;Lee, Seung-S.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.2
    • /
    • pp.195-205
    • /
    • 2005
  • In decision tree analysis, C4.5 and CART algorithm have some problems of computational complexity and bias on variable selection. But QUEST algorithm solves these problems by dividing the step of variable selection and split point selection. When input variables are continuous, QUEST algorithm uses ANOVA F-test under the assumption of normality and homogeneity of variances. In this paper, we investigate the influence of violation of normality assumption and effect of the transformation of variables in the QUEST algorithm. In the simulation study, we obtained the empirical powers of variable selection and the empirical bias of variable selection after transformation of variables having various type of underlying distributions.

  • PDF

An Improvement Algorithm for the Image Compression Imaging

  • Hu, Kaiqun;Feng, Xin
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.30-41
    • /
    • 2020
  • Lines and textures are natural properties of the surface of natural objects, and their images can be sparsely represented in suitable frames such as wavelets, curvelets and wave atoms. Based on characteristics that the curvelets framework is good at expressing the line feature and wavesat is good at representing texture features, we propose a model for the weighted sparsity constraints of the two frames. Furtherly, a multi-step iterative fast algorithm for solving the model is also proposed based on the split Bergman method. By introducing auxiliary variables and the Bergman distance, the original problem is transformed into an iterative solution of two simple sub-problems, which greatly reduces the computational complexity. Experiments using standard images show that the split-based Bergman iterative algorithm in hybrid domain defeats the traditional Wavelets framework or curvelets framework both in terms of timeliness and recovery accuracy, which demonstrates the validity of the model and algorithm in this paper.

Performance Improvement of Tree Structured Subband Filtering (트리구조 필터뱅크를 이용한 서브밴드 필터링에서의 수렴 성능 향상)

  • 최창권;조병모
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.407-416
    • /
    • 2000
  • Adaptive digital filtering and noise cancelling technique using a tree structured filter bank are presented to reduce a undesirable aliasing due to the decimation of filtered output and improve the performance in terms of mean-square error and the convergence speed using a aliasing canceller. A signal is split into two subband by analysis filter bank and decimated by decimator and reconstructed by interpolation technique and synthesis filter bank. A variable step-size LMS algorithm is used to improve the convergence speed in case of existing the measurement noise in desired input of filter. It is shown by computer simulation that the proposed subband structure in this paper is superior to conventional subband filter structure in terms of mean-square error and convergence speed.

  • PDF

Supercontinuum Generation with Femtosecond Pulses and Photonic Crystal Fibers (펨토초 펄스와 광결정 광섬유를 이용한 초 연속스펙트럼의 발생)

  • Choi, Hyoung-Gye;Kim, So-An;Kee, Chul-Sik;Sung, Jae-Hee;Yu, Tae-Jun;Ko, Do-Kyeong;Lee, Jong-Min
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.345-350
    • /
    • 2007
  • The characteristics of the supercontinuum generated in photonic crystal fibers were investigated by using the generalized nonlinear $Schr\"{o}dinger$ equation and the split-step Fourier method. Based on the simulated results, we generated the supercontinuum spectrum with the flatness of ${\pm}4dB$ in the wavelength range of 650 to 900 nm by employing a 200-fs pulse of Ti:sapphire laser and a commercial photonic crystal fiber.

Number of Phase Screens Required for Simulation of a High-energy Laser Beam's Propagation Experiencing Atmospheric Turbulence and Thermal Blooming (대기 난류와 열적 블루밍을 겪는 고출력 레이저 빔의 대기 전파 시뮬레이션에 필요한 위상판 개수 분석)

  • Seokyoung Yoon;Woohyeon Moon;Hoon Kim
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.2
    • /
    • pp.49-60
    • /
    • 2024
  • We analyze the number of phase screens required for the simulation of a high-energy laser beam's propagation over an atmospheric channel. For high-energy lasers exceeding tens of kilowatts (kW) in power, the laser beam is mainly affected by atmospheric turbulence and thermal blooming. When using the split-step method to implement losses due to atmospheric absorption and scattering and distortion of the beam due to turbulence and thermal blooming, the number of phase screens is a critical factor in determining the accuracy and time required for the simulation. By comparing simulation results obtained using a large number of phase screens (e.g., 150 screens) under a wide range of atmospheric turbulence conditions, we provide new guidelines for the number of phase screens required for simulating the beam propagation of a high-power laser below 2.5×106 W/m2 (e.g., a 500-kW laser beam having a 50-cm diameter).

Development of Range-Dependent Ray Model for Sonar Simulator (소나 시뮬레이터용 거리 종속 음선 모델 개발)

  • Jung, Young-Cheol;Lee, Keunhwa;Seong, Woojae;Kim, Hyoung-Rok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.163-173
    • /
    • 2014
  • Sound propagation algorithm for a sonar simulator is required to run in real-time and should be able to model the range and depth dependence of the Korean ocean environments. Ray model satisfies these requirements and we developed an algorithm for range-dependent ocean environments. In this algorithm, we considered depth-dependence of sound speed through rays based on a rectangular cell method and layer method. Range-dependence of sound speed was implemented based on a split-step method in the range direction. Eigen-ray is calculated through an interpolation of ray bundles and Gaussian interpolation function was used. The received time signal of sonar was simulated by Fourier transform of eigen-ray solution in the frequency domain. Finally, for the verification of proposed algorithm, we compared the results of transmission loss with other validated models such as BELLHOP, SNUPE, KRAKEN and OASES, for the Pekeris waveguide, wedge, and deep ocean environments. As a result, we obtained satisfactory agreements among them.

Color Image Segmentation Using Adaptive Quantization and Sequential Region-Merging Method (적응적 양자화와 순차적 병합 기법을 사용한 컬러 영상 분할)

  • Kwak, Nae-Joung;Kim, Young-Gil;Kwon, Dong-Jin;Ahn, Jae-Hyeong
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.4
    • /
    • pp.473-481
    • /
    • 2005
  • In this paper, we propose an image segmentation method preserving object's boundaries by using the number of quantized colors and merging regions using adaptive threshold values. First of all, the proposed method quantizes an original image by a vector quantization and the number of quantized colors is determined differently using PSNR each image. We obtain initial regions from the quantized image, merge initial regions in CIE Lab color space and RGB color space step by step and segment the image into semantic regions. In each merging step, we use color distance between adjacent regions as similarity-measure. Threshold values for region-merging are determined adaptively according to the global mean of the color difference between the original image and its split-regions and the mean of those variations. Also, if the segmented image of RGB color space doesn't split into semantic objects, we merge the image again in the CIE Lab color space as post-processing. Whether the post-processing is done is determined by using the color distance between initial regions of the image and the segmented image of RGB color space. Experiment results show that the proposed method splits an original image into main objects and boundaries of the segmented image are preserved. Also, the proposed method provides better results for objective measure than the conventional method.

  • PDF

A maximum likelihood approach to infer demographic models

  • Chung, Yujin
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.3
    • /
    • pp.385-395
    • /
    • 2020
  • We present a new maximum likelihood approach to estimate demographic history using genomic data sampled from two populations. A demographic model such as an isolation-with-migration (IM) model explains the genetic divergence of two populations split away from their common ancestral population. The standard probability model for an IM model contains a latent variable called genealogy that represents gene-specific evolutionary paths and links the genetic data to the IM model. Under an IM model, a genealogy consists of two kinds of evolutionary paths of genetic data: vertical inheritance paths (coalescent events) through generations and horizontal paths (migration events) between populations. The computational complexity of the IM model inference is one of the major limitations to analyze genomic data. We propose a fast maximum likelihood approach to estimate IM models from genomic data. The first step analyzes genomic data and maximizes the likelihood of a coalescent tree that contains vertical paths of genealogy. The second step analyzes the estimated coalescent trees and finds the parameter values of an IM model, which maximizes the distribution of the coalescent trees after taking account of possible migration events. We evaluate the performance of the new method by analyses of simulated data and genomic data from two subspecies of common chimpanzees in Africa.

A step-by-step intraoperative strategy during one-stage reconstruction of an acute electrical burn injury in the neck for superior surgical outcome in India: a case report

  • Mainak Mallik;Sanjay Kumar Giri;M. Vishnu Swaroop Reddy;Kallol Kumar Das Poddar
    • Journal of Trauma and Injury
    • /
    • v.37 no.2
    • /
    • pp.151-157
    • /
    • 2024
  • Electrical burn injuries can cause more damage than clinical evaluations initially suggest. The energy waves penetrate from the surface to the deepest layers of tissue, causing extensive harm at every level. The neck is a critical area, both functionally and aesthetically. We present a case involving a young male patient with a severe fourth-degree electrical burn on the neck, who underwent a single-stage debridement and reconstructive surgery. The pectoralis major myocutaneous flap is a versatile option for various head and neck reconstructions. However, if the donor site cannot be closed primarily and requires split-thickness skin grafting, it can result in unsightly scars and deformities. For large flap paddles, it is ideal to reconstruct the secondary defect with locoregional flaps. In this case, we successfully reconstructed the donor site's secondary defect using a contralateral internal mammary artery perforator flap, without resorting to any skin grafts. The early postoperative results demonstrated satisfactory cosmesis, patient satisfaction, and functional outcomes.

Anomalous Propagation Characteristics of an Airy Beam in Nonlocal Nonlinear Medium

  • Wu, Yun-Long;Ye, Qin;Shao, Li
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.191-197
    • /
    • 2021
  • The anomalous propagation characteristics of a single Airy beam in nonlocal nonlinear medium are investigated by utilizing the split-step Fourier-transform method. We show that besides the normal straight propagation trajectory, the breathing solitons formed by the interaction between Airy beam and nonlocal nonlinear medium can propagate along the sinusoidal trajectory, and the anomalous trajectory can be modulated arbitrarily by altering the initial amplitude and the nonlocal nonlinear coefficient. In addition, the initial amplitude and the nonlocal nonlinear coefficient can have inverse impacts on the formation and transformation of the equilibrium state of spatial solitons, when the two parameters are larger than certain values. Therefore, the reversible transformation of the evolution dynamics of two soliton states can be realized by adjusting those two parameters properly. Finally, it is shown that the propagation properties of the solitons formed by the interaction between Airy beam and nonlocal nonlinear medium can be controlled arbitrarily, by adjusting the distribution factor and nonlocal coefficient.