DOI QR코드

DOI QR Code

Anomalous Propagation Characteristics of an Airy Beam in Nonlocal Nonlinear Medium

  • Wu, Yun-Long (State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology) ;
  • Ye, Qin (State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology) ;
  • Shao, Li (State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology)
  • Received : 2020.11.20
  • Accepted : 2021.01.15
  • Published : 2021.04.25

Abstract

The anomalous propagation characteristics of a single Airy beam in nonlocal nonlinear medium are investigated by utilizing the split-step Fourier-transform method. We show that besides the normal straight propagation trajectory, the breathing solitons formed by the interaction between Airy beam and nonlocal nonlinear medium can propagate along the sinusoidal trajectory, and the anomalous trajectory can be modulated arbitrarily by altering the initial amplitude and the nonlocal nonlinear coefficient. In addition, the initial amplitude and the nonlocal nonlinear coefficient can have inverse impacts on the formation and transformation of the equilibrium state of spatial solitons, when the two parameters are larger than certain values. Therefore, the reversible transformation of the evolution dynamics of two soliton states can be realized by adjusting those two parameters properly. Finally, it is shown that the propagation properties of the solitons formed by the interaction between Airy beam and nonlocal nonlinear medium can be controlled arbitrarily, by adjusting the distribution factor and nonlocal coefficient.

Keywords

References

  1. G. A. Siviloglou and D. N. Christodoulides, "Accelerating finite energy Airy beams," Opt. Lett. 32, 979-981 (2007). https://doi.org/10.1364/OL.32.000979
  2. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, "Observation of accelerating Airy beams," Phys. Rev. Lett. 99, 213901 (2007). https://doi.org/10.1103/PhysRevLett.99.213901
  3. M. A. Bandres, "Accelerating parabolic beams," Opt. Lett. 33, 1678-1680 (2008). https://doi.org/10.1364/OL.33.001678
  4. N. K. Efremidis and D. N. Christodoulides, "Abruptly autofocusing waves," Opt. Lett. 35, 4045-4047 (2010). https://doi.org/10.1364/OL.35.004045
  5. M. A. Bandres, "Accelerating beams," Opt. Lett. 34, 3791-3793 (2009). https://doi.org/10.1364/OL.34.003791
  6. A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W. Wise, "Airy-Bessel wave packets as versatile linear light bullets," Nat. Photonics 4, 103-106 (2010). https://doi.org/10.1038/nphoton.2009.264
  7. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, "Ballistic dynamics of Airy beams," Opt. Lett. 33, 207-209 (2008). https://doi.org/10.1364/OL.33.000207
  8. Y. Hu, P. Zhang, C. Lou, S. Huang, J. Xu, and Z. Chen, "Optimal control of the ballistic motion of Airy beams," Opt. Lett. 35, 2260-2262 (2010). https://doi.org/10.1364/OL.35.002260
  9. J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, "Self-healing properties of optical Airy beams," Opt. Express 16, 12880-12891 (2008). https://doi.org/10.1364/OE.16.012880
  10. X. Chu, G. Zhou, and R. Chen, "Analytical study of the self-healing property of Airy beams," Phys. Rev. A 85, 013815 (2012). https://doi.org/10.1103/physreva.85.013815
  11. M. V. Berry and N. L. Balazs, "Nonspreading wave packets," Am. J. Phys. 47, 264-267 (1979). https://doi.org/10.1119/1.11855
  12. S. Longhi, "Airy beams from a microchip laser," Opt. Lett. 36, 716-718 (2011). https://doi.org/10.1364/OL.36.000716
  13. N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Ady, "Generation of electron Airy beams," Nature 494, 331-335 (2013). https://doi.org/10.1038/nature11840
  14. N. A. Khilo, V. N. Belyi, N. S. Kazak, and P. I. Ropot, "Acoustooptic refraction-influenced generation of tunable incomplete Airy beams," J. Opt. 16, 085702 (2014). https://doi.org/10.1088/2040-8986/16/8/085702
  15. J. D. Ring, C. J. Howls, and M. R. Dennis, "Incomplete Airy beams: finite energy from a sharp spectral cutoff," Opt. Lett. 38, 1639-1641(2013). https://doi.org/10.1364/OL.38.001639
  16. X.-Z. Wang, Q. Li, and Q. Wang, "Arbitrary scanning of the Airy beams using additional phase grating with cubic phase mask," Appl. Opt. 51, 6726-6731 (2012). https://doi.org/10.1364/AO.51.006726
  17. X.-Z. Wang, Q. Li, Z.-P. Xiong, Z. Zhang, and Q. Wang, "Generation and scanning of Airy beams array by combining multiphase patterns," Appl. Opt. 52, 3039-3047 (2013). https://doi.org/10.1364/AO.52.003039
  18. F. Bleckmann, A. Minovich, J. Frohnhaus, D. N. Neshev, and S. Linden, "Manipulation of Airy surface plasmon beams," Opt. Lett. 38, 1443-1445 (2013). https://doi.org/10.1364/OL.38.001443
  19. P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, "Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets," Nat. Commun. 4, 2622 (2013). https://doi.org/10.1038/ncomms3622
  20. D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, "Spatiotemporal Airy light bullets in the linear and nonlinear regimes," Phys. Rev. Lett. 105, 253901 (2010). https://doi.org/10.1103/PhysRevLett.105.253901
  21. S. Jia, J. Lee, J. W. Fleischer, G. A. Siviloglou, and D. N. Christodoulides, "Diffusion-trapped Airy beams in photorefractive media," Phys. Rev. Lett. 104, 253904 (2010). https://doi.org/10.1103/PhysRevLett.104.253904
  22. R. Driben and T. Meier, "Nonlinear dynamics of Airy-vortex 3D wave packets: emission of vortex light waves," Opt. Lett. 39, 5539-5542 (2014). https://doi.org/10.1364/OL.39.005539
  23. I. Kaminer, M. Segev, and D. N. Christodoulides, "Self-accelerating self-trapped optical beams," Phys. Rev. Lett. 106, 213903 (2011). https://doi.org/10.1103/PhysRevLett.106.213903
  24. Y. Hu, S. Huang, P. Zhang, C. Lou, J. Xu, and Z. Chen, "Persistence and breakdown of Airy beams driven by an initial nonlinearity," Opt. Lett. 35, 3952-3954 (2010). https://doi.org/10.1364/OL.35.003952
  25. I. Dolev, I. Kaminer, A. Shapira, M. Segev, and A. Arie, "Experimental observation of self-accelerating beams in quadratic nonlinear media," Phys. Rev. Lett. 108, 113903 (2012). https://doi.org/10.1103/PhysRevLett.108.113903
  26. R.-P. Chen, C.-F. Yin, X.-X. Chu, and H. Wang, "Effect of Kerr nonlinearity on an Airy beam," Phys. Rev. A 82, 043832 (2010). https://doi.org/10.1103/physreva.82.043832
  27. R.-P. Chen, K.-H. Chew, and S. He, "Dynamic control of collapse in a vortex Airy beam," Sci. Rep. 3, 1406 (2013). https://doi.org/10.1038/srep01406
  28. A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, "Stationary nonlinear Airy beams," Phys. Rev. A 84, 021807(R) (2011). https://doi.org/10.1103/physreva.84.021807
  29. R. Driben, V. V. Konotop, and T. Meier, "Coupled Airy breathers," Opt. Lett. 39, 5523-5526 (2014). https://doi.org/10.1364/OL.39.005523
  30. I. M. Allayarov and E. N. Tsoy, "Dynamics of Airy beams in nonlinear media," Phys. Rev. A 90, 023852 (2014). https://doi.org/10.1103/physreva.90.023852
  31. C. Conti, M. Peccianti, and G. Assanto, "Route to nonlocality and observation of accessible solitons," Phys. Rev. Lett. 91, 073901 (2003). https://doi.org/10.1103/PhysRevLett.91.073901
  32. A. Rudnick, and D. M. Marom, "Airy-soliton interactions in Kerr media," Opt. Express 19, 25570-25582 (2011). https://doi.org/10.1364/OE.19.025570
  33. N. Wiersma, N. Marsal, M. Sciamanna, and D. Wolfersberger, "All-optical interconnects using Airy beams," Opt. Lett. 39, 5997-6000 (2014). https://doi.org/10.1364/OL.39.005997
  34. Y. Zhang, M. Belic, Z. Wu, H. Zheng, K. Lu, Y. Li, and Y. Zhang, "Soliton pair generation in the interactions of Airy and nonlinear accelerating beams," Opt. Lett. 38, 4585-4588 (2013). https://doi.org/10.1364/OL.38.004585
  35. M. Shen, J. Gao, and L. Ge, "Solitons shedding from Airy beams and bound states of breathing Airy solitons in nonlocal nonlinear media," Sci. Rep. 5, 9814 (2015). https://doi.org/10.1038/srep09814