• Title/Summary/Keyword: Steering Tilt Control

Search Result 10, Processing Time 0.021 seconds

A Study on the Control System of the Narrow Vehicles for Improvement of Maneuvering under Emergency Situation (폭이 좁은 차량의 비상주행시 주행성능개선을 위한 제어시스템에 관한 연구)

  • So, Sang-Gyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.166-174
    • /
    • 2004
  • In urban area narrow commuter vehicles have attracted interest as a possible solution to reduce traffic congestion and parking problems. However, a narrow vehicle has an increased to overturn during hard cornering when compared to conventional vehicles. This tendency can be reduced by tilting it toward the inside of the turn. Two types of automatic tilting control systems which are Direct Tilt Control(DTC) and Steering Tilt Control(STC) have been developed. In this paper as one of the technique to improve the handling performance for the unusual vehicle the control system which blends both the DTC and the STC system is considered. It uses the merits of both the DTC and the STC system. As a control strategy for combination the switching control method is used. Finally, the fact that the unusual vehicle is safe under an emergency situation such as slippery road surface is proved by computer simulation.

A Study on the New Active Tilt Control Systems for Improving Passenger′s Feeling of Ground Vehicles in Urban Area (도시형 지상 차량의 승차감 향상을 위한 새로운 능동형 기울임 제어 시스템에 관한 연구)

  • 소상균;변기식
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.103-110
    • /
    • 2001
  • To reduce the traffic congestion and parking problems in urban areas tall and narrow vehicles have interested as a means to increase the utilization of existing freeways and parking facilities. The stability problem for those narrow vehicles which might be caused can be reduced by tilting the body toward the inside of the turn. The Direct Tilt Control(DTC) system and the Steering Tilt Control(STC) system have been proposed for those narrow vehicles. In this paper, as one of the performance improvement for that kind of vehicle a new control system to use the merits of both the DTC system and the STC system is proposed. Because two different control systems fight each other, the switching control scheme is applied as a means to prevent fighting. Also, the method in order to achieve the smoothly changed control system when the system is switched from the DTC to the STC or from the STC to the DTC, the appropriate type of control gain is designed.

  • PDF

Development of a Hydraulic Level Control System for High-speed Rice Transplanting Machines (고속 이앙기의 유압 수평 제어 장치 개발에 관한 연구)

  • 정연근;정병학;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.27 no.2
    • /
    • pp.79-88
    • /
    • 2002
  • This study was conducted to develop system for high speed rice transplanting machines. The control system includes a sensor detecting the tilt angle of the seedling bed, a micro-controller and a hydraulic system consisting of a double acting cylinder, a four-way three-position solenoid valve, a relief valve and a hydraulic pump. The levelling system shared the pump with the existing steering control, resulting in a tandem center circuit for the steering and levelling control systems. Using the input signal from the sensor, the micro-controller determined and generated the output signal to control the cylinder through the solenoid valve to keep the seedling bed always parallel to the water surface regardless of soil unevenness during the transplanting operations. Both an ON/OFF and a PWM control schemes were tested. When the flow rate was more than 1 ι/min in the ON/OFF control, the system showed unstable rolling. However, in the PWM control, the system worked stably although the flow rate was more than 1 ι/min. The PWM control showed a better performance when a large difference between the angle and the dead band of the control system occurred. The characteristics of tile system response to given tilt angles were predicted by a computer simulation. Both the ON/OFF and the PWM control systems worked well providing that the operating and waiting times were properly adjusted.

Control Algorithm for Stabilization of Tilt Angle of Unmanned Electric Bicycle

  • Han, Sangchul;Han, Jongkil;Ham, Woonchul
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.176-180
    • /
    • 2001
  • In this papers, we derive a simple kinematic and dynamic formulation of an unmanned electric bicycle. We also check the controllability of the stabilization problem of bicycle. We propose a new control algorithm for the self stabilization of unmanned bicycle with bounded wheel speed and steering angle by using nonlinear control based on the sliding patch and stuck phenomena which was introduced by W. Ham. We also propose a sort of optimal control strategy for steering angle and driving wheel speed that make the length of bicycle\`s path be the shortest. From the computer simulation results, we prove the validity of the proposed control algorithm.

  • PDF

Design of Balancing Robot Controller using Optimal Control Method (최적제어 기법을 이용한 밸런싱 로봇 제어기의 설계)

  • Yeo, Hee-Joo;Park, Hun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.190-196
    • /
    • 2014
  • In this paper, we get state equations based on wheel's rotation, tilt and steering are independent each other in balancing robot. Accordingly, we propose two LQR controllers which are appropriate for rotation and steering control of a balancing robot. And its superiority and appropriateness are demonstrated by a comparison to a PID method. Simulation results verify the possibility of upright balancing, rectilinear motion and position control. Moreover, experimental results show that it guarantees the performance to apply the two LQR controllers to balance the robot.

Development of Autonomous Steering Platforms for Upland Furrow (노지 밭고랑 환경 적용을 위한 자율조향 플랫폼 개발)

  • Cho, Yongjun;Yun, Haeyong;Hong, Hyunggil;Oh, Jangseok;Park, Hui Chang;Kang, Minsu;Park, Kwanhyung;Seo, Kabho;Kim, Sunduck;Lee, Youngtae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.70-75
    • /
    • 2021
  • We developed a platform that was capable of autonomous steering in a furrow environment. It was developed to autonomously control steering by recognizing the furrow using a laser distance, three-axis tilt, and temperature sensor. The performance evaluation indicated that the autonomous steering success rate was 99.17%, and it was possible to climb up to 5° on the slope. The usage time was approximately 40 h, and the maximum speed was 6.7 km/h.

A Beam Steering Method of the Rotating Scanning Phased Array Antenna (회전 주사식 위상 배열 안테나의 빔 조향 방법)

  • 한동호;염동진;권경일;홍동희
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.2
    • /
    • pp.147-156
    • /
    • 1996
  • In this paper we proposed a beam steering equation for the planar slotted waveguide array antenna. The tilt angle measured from the rotating axis and the aperture distribution of the antenna were the most important factors for the beam steering. From the equation, we calculated the frequency and phase distribution of the aperture for any desired beam direction. And we developed a high speed control algorithm delivering the phase data to the phase shifters of a one-dimensional phased array antenna. To reduce complexity of the control circuit and the phase delivery time, we proposed the serial phase repeating method. Because of its simplicity, we expect it can be useful for a large 2- dimensional fully phased array antenna.

  • PDF

GMT FSM Prototype의 개발 현황

  • Kim, Yeong-Su;Go, Ju-Heon;Han, In-U;Yang, Ho-Sun;Kim, Ho-Sang;Lee, Gyeong-Don;An, Hyo-Seong;Cho, Myung;Cheon, Mu-Yeong;Park, Byeong-Gon;Gyeong, Jae-Man;Yun, Yang-No
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.124.2-124.2
    • /
    • 2011
  • 한국천문연구원은 GMT (Giant Magellan Telescope)의 부경 중의 하나인 FSM (Fast Steering Mirror)의 시험모델을 개발 중이다. 구경 1.06m의 비축 비구면 반사경을 경량화 가공을 하는 중이며, tip-tilt 제어를 위한 test-bed를 제작하고 시험하는 중이다. 이를 위하여 actuator control model과 진공 운영모델을 마련하고 있다. 또한 tip-tilt의 최종 성능시험을 위한 장치를 개발하기 위한 계획을 세우고 있다. 이 발표에서는 FSM 시험모델의 개발 현황에 대해 논한다.

  • PDF

Development of Two Wheeled Car-like Mobile Robot Using Balancing Mechanism : BalBOT VII (밸런싱 메커니즘을 이용한 이륜형 자동차 형태의 이동로봇개발 : BalBOT VII)

  • Lee, Hyung-Jik;Jung, Seul
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.289-297
    • /
    • 2009
  • This paper presents the development and control of a two wheeled car-like mobile robot using balancing mechanism whose heading control is done by turning the handle. The mobile inverted pendulum is a combined system of a mobile robot and an inverted pendulum system. A sensor fusion technique of low cost sensors such as a gyro sensor and a tilt sensor to measure the balancing angle of the inverted pendulum robot system accurately is implemented. Experimental studies of the trajectory following control task has been conducted by command of steering wheel while balancing.

  • PDF

Development Plan for the GMT Fast-steering Secondary Mirror

  • Lee, Sugnho;Han, Jeong-Yeol;Park, Chan;Jeong, Ueejeong;Yoon, Yang-noh;Song, Je Heon;Moon, Bongkon;Park, Byeong-Gon;Cho, Myung K.;Dribusch, Christoph;Park, Won Hyun;Jun, Youra;Yang, Ho-Soon;Moon, Il-Kwon;Oh, Chang Jin;Kim, Ho-Sang;Lee, Kyoung-Don;Bernier, Robert;Gardner, Paul;Alongi, Chris;Rakich, Andrew;Dettmann, Lee;Rosenthal, Wylie
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.66.3-67
    • /
    • 2016
  • The Giant Magellan Telescope (GMT) will feature two interchangeable Gregorian secondary mirrors, an adaptive secondary mirror (ASM) and a fast-steering secondary mirror (FSM). The FSM has an effective diameter of 3.2 m and built as seven 1.1 m diameter circular segments, which are conjugated 1:1 to the seven 8.4m segments of the primary. Each FSM segment contains a tip-tilt capability for fine co-alignment of the telescope subapertures and fast guiding to attenuate telescope wind shake and mount control jitter. This tip-tilt capability thus enhances performance of the telescope in the seeing limited observation mode. As the first stage of the FSM development, KASI conducted a Phase 0 study to develop a program plan detailing the design and manufacturing process for the seven FSM segments. The GMTO-KASI team matured this plan via an internal review in May 2016 and the revised plan was further assessed by an external review in June 2016. In this poster, we present the technical aspects of the FSM development plan.

  • PDF