• 제목/요약/키워드: Steel-tube

검색결과 1,099건 처리시간 0.028초

Investigation on circular and octagonal concrete-filled double skinned steel tubular short columns under axial compression

  • R, Manigandan;Kumar, Manoj;Shedge, Hrishikesh N.
    • Steel and Composite Structures
    • /
    • 제44권1호
    • /
    • pp.141-154
    • /
    • 2022
  • This paper describes the experimental and numerical investigation on circular and octagonal CFDST short columns under concentric loading to study their responses to various internal circular steel tube sizes by the constant cross-sectional dimensions of the external circular and octagonal steel tube. The non-linear finite element analysis of circular and octagonal CFDST columns was executed using the ABAQUS to forecast and compare the axial behavior influenced by the various sizes of internal circular steel tubes. The study shows that the axial compressive strength and ductility of circular and octagonal CFDST columns were significantly influenced by inner steel tubes with the strengths of constituent materials.

Loading capacity evaluation of composite box girder with corrugated webs and steel tube slab

  • He, Jun;Liu, Yuqing;Xu, Xiaoqing;Li, Laibin
    • Structural Engineering and Mechanics
    • /
    • 제50권4호
    • /
    • pp.501-524
    • /
    • 2014
  • This paper presents a type of composite box girder with corrugated webs and concrete filled steel tube slab to overcome cracking on the web and reduce self-weight. Utilizing corrugated steel web improves the efficiency of prestressing introduced into the top and bottom slabs due to the accordion effect. In order to understand the loading capacity of such new composite structure, experimental and numerical analyses were conducted. A full-scale model was loaded monotonically to investigate the deflection, strain distribution, loading capacity and stiffness during the whole process. The experimental results show that test specimen has enough loading capacity and ductility. Based on experimental works, a finite element (FE) model was established. The load-displacement curves and stress distribution predicted by FE model agree well with that obtained from experiments, which demonstrates the accuracy of proposed FE model. Moreover, simplified theoretical analysis was conducted depending on the assumptions which were confirmed by the experimental and numerical results. The simplified analysis results are identical with the tested and numerical results, which indicate that simplified analytical model can be used to predict the loading capacity of such composite girder accurately. All the findings of present study may provide reference for the application of such structure in bridge construction.

스테인리스 강관의 굽힘 특성 연구 (A Study on the Bendability of Stainless Steel Tubes)

  • 이건엽;이호진;이혜경;김윤규;문영훈
    • 소성∙가공
    • /
    • 제18권4호
    • /
    • pp.336-341
    • /
    • 2009
  • Hydroformed parts have higher dimensional accuracy, structural strength, and dimensional repeatability. Particularly in the automotive industry, manufacturing of parts with complex shapes from tubular materials sometimes requires one or more pre-forming operations such as bending before the hydroforming process. The pre-bending process is an important process for the successful hydroforming in the case where the perimeter of the blank is nearly the same as that of final product. The bendability of a tube depends on the parameters such as the bending radius, welding methods, mechanical properties and hardness. Through the stainless steel tubes bent by rotary draw bending machine, this study shows the following : (1) The influence on spring back ratio variation with stress level in the welded bent tube. (2) The Cross-section ovality variation with weld seam position and bending radius. (3) The relation between elongation and thickness reduction of tension zone with weld seam position and bending radius. (4) Workability evaluation of bent stainless steel tubes through the hardness of materials and hardness increment. The results of this study may help to understanding of characteristics on bendability of stainless steel tubes.

일정축력과 반복 수평력을 받는 콘크리트충전 각형강관 기둥의 변형성능 평가 (Evaluation on Deformation Capacity of CFT Square Columns subject to Constant Axial and Cyclic Lateral Loads)

  • 지구현;최성모;김동규
    • 한국강구조학회 논문집
    • /
    • 제12권2호통권45호
    • /
    • pp.209-219
    • /
    • 2000
  • 콘크리트충전 강관구조는 합성효과에 의해 강관과 콘크리트의 단점을 상호보완하여 역학적으로 우수한 성능을 발휘할 수 있다. 그래서, 최근에는 초고층구조물시스템의 하나로 주목을 받고 있다. 본 연구의 목적은 일정축력과 반복 수평력을 받는 콘크리트 충전 각형강관기둥의 내력 및 변형성능을 평가하는 것이다. 이 실험의 변수로는 강관의 폭 두께비, 축력비, 콘크리트 강도, 하중가력방법과 콘크리트의 충전유무로 정하여 총 16개의 실험체를 제작하여 실험하였다. 실험결과로부터 실험체의 최대내력, 초기강성 및 변형성능에 대해 검토하였다.

  • PDF

콘크리트충전 각형강관기둥-보 핀접합부의 거동에 관한 실험적 연구 (Structural Behaviour of Beam-to-Concrete Filled Steel Tube Column Pin Connections)

  • 김철환;이은택;김성은
    • 한국강구조학회 논문집
    • /
    • 제12권4호통권47호
    • /
    • pp.437-443
    • /
    • 2000
  • 콘크리트 충전각형강관 기둥-보 핀접합부를 대상으로 접합부의 회전강성, 전단내력 등 역학적 특성을 규명하기 위하여 실험을 수행하였다. 실험변수는 강관기둥의 폭-두께비 및 강관 내부의 수평 다이어프램, 슬래브 설치 유무이다. 기둥의 폭-두께비가 큰 시험체가 폭-두께비가 작은 시험체에 비하여 접합부의 회전강성이 낮으며, 변형도 접합부에 집중되어 발생한다.

  • PDF

강관 코아 합성 중공 기둥의 연성 거동 연구 (Ductility of Circular Hollow Columns with Internal Steel Tube)

  • 강영종;한승룡;박남회
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 춘계학술대회 논문집
    • /
    • pp.183-188
    • /
    • 2002
  • In locations where the cost or concrete is relatively high, or in situations where the weight or concrete members is to be kept to a minimum, it may be economical to use hollow reinforced concrete vertical members. Hollow reinforced concrete columns with low axial load, moderate longitudinal steel percentage, and a reasonably thick wall were found to perform in a ductile manner at the flexural strength, similar to solid columns. However, hollow reinforced concrete columns with high axial load, high longitudinal steel percentage, and a thin wall were found to behave in a brittle manner at the flexural strength, since the neutral axis is forced to occur away from the inside face of the tube towards the section centroid and, as a result, crushing of concrete occurs near the unconfined inside face of the section. If, however, a steel tube is placed near the inside face of a circular hollow column, the column can be expected not to fail in a brittle manner by disintegration of the concrete in the compression zone. Design recommendation and example by moment-curvature analysis program for curvature ductility are presented. Theoretical moment-curvature analysis for reinforced concrete columns, indicating the available flexural strength and ductility, can be conducted providing the stress-strain relation for the concrete and steel are known. In this paper, a unified stress-stain model for confined concrete by Mander is developed for members with circular sections.

  • PDF

Prediction of ultimate load capacity of concrete-filled steel tube columns using multivariate adaptive regression splines (MARS)

  • Avci-Karatas, Cigdem
    • Steel and Composite Structures
    • /
    • 제33권4호
    • /
    • pp.583-594
    • /
    • 2019
  • In the areas highly exposed to earthquakes, concrete-filled steel tube columns (CFSTCs) are known to provide superior structural aspects such as (i) high strength for good seismic performance (ii) high ductility (iii) enhanced energy absorption (iv) confining pressure to concrete, (v) high section modulus, etc. Numerous studies were reported on behavior of CFSTCs under axial compression loadings. This paper presents an analytical model to predict ultimate load capacity of CFSTCs with circular sections under axial load by using multivariate adaptive regression splines (MARS). MARS is a nonlinear and non-parametric regression methodology. After careful study of literature, 150 comprehensive experimental data presented in the previous studies were examined to prepare a data set and the dependent variables such as geometrical and mechanical properties of circular CFST system have been identified. Basically, MARS model establishes a relation between predictors and dependent variables. Separate regression lines can be formed through the concept of divide and conquers strategy. About 70% of the consolidated data has been used for development of model and the rest of the data has been used for validation of the model. Proper care has been taken such that the input data consists of all ranges of variables. From the studies, it is noted that the predicted ultimate axial load capacity of CFSTCs is found to match with the corresponding experimental observations of literature.

Statistical-based evaluation of design codes for circular concrete-filled steel tube columns

  • Li, Na;Lu, Yi-Yan;Li, Shan;Liang, Hong-Jun
    • Steel and Composite Structures
    • /
    • 제18권2호
    • /
    • pp.519-546
    • /
    • 2015
  • This study addresses the load capacity prediction of circular concrete-filled steel tube (CFST) columns under axial compression using current design codes. Design methods given in the Chinese code CECS 28:2012 (2012), American code AISC 360-10 (2010) and EC4 (2004) are presented and described briefly. A wide range of experimental data of 353 CFST columns is used to evaluate the applicability of CECS 28:2012 in calculating the strength of circular CFST columns. AISC 360-10 and EC4 (2004) are also compared with the test results. The comparisons indicate that all three codes give conservative predictions for both short and long CFST columns. The effects of concrete strength, steel strength and diameter-to-thickness ratio on the accuracy of prediction according to CECS 28:2012 are discussed, which indicate a possibility of extending the limitations on the material strengths and diameter-to-thickness ratio to higher values. A revised equation for slenderness reduction factor in CECS 28:2012 is given.

Axial behavior of RC column strengthened with SM-CFST

  • Jiang, Haibo;Li, Jiahang;Cheng, Quan;Xiao, Jie;Chen, Zhenkan
    • Steel and Composite Structures
    • /
    • 제43권6호
    • /
    • pp.773-784
    • /
    • 2022
  • This paper aims to investigate the axial compressive behavior of reinforced concrete (RC) columns strengthened with self-compacting and micro-expanding (SM) concrete-filled steel tubes (SM-CFSTs). Nine specimens were tested in total under the local axial compression. The test parameters included steel tube thickness, filling concrete strength, filling concrete type and initial axial preloading. The test results demonstrated that the initial stiffness, ultimate bearing capacity and ductility of original RC columns were improved after being strengthened by SM-CFSTs. The ultimate bearing capacity of the SM-CFST strengthened RC columns was significantly enhanced with the increase of steel tube thickness. The initial stiffness and ultimate bearing capacity of the SM-CFST strengthened RC columns were slightly enhanced with the increase of filling concrete strength. However, the effect of filling concrete type and initial axial preloading of the SM-CFST strengthened RC columns were negligible. Three equations for predicting the ultimate bearing capacity of the SM-CFST strengthened RC columns were compared, and the modified equation based on Chinese code (GB 50936-2014) was more precise.

Experimental study on bearing capacity of PFCC column-RC beam joint reinforced with CST

  • Ping Wu;Dongang Li;Feng Yu;Yuan Fang;Guosheng Xiang;Zilong Li
    • Steel and Composite Structures
    • /
    • 제47권1호
    • /
    • pp.19-36
    • /
    • 2023
  • An experimental study of eleven PVC-FRP Confined Concrete (PFCC) column-Reinforced Concrete (RC) beam joints reinforced with Core Steel Tube (CST) under axial compression is carried out. All specimens are designed in accordance with the principle of "weak column and strong joint". The influences of FRP strips spacing, length and steel ratio of CST, height and stirrup ratio of joint on mechanical behavior are investigated. As the design anticipated, all specimens are destroyed by column failure. The failure mode of PFCC column-RC beam joint reinforced with CST is the yielding of longitudinal steel bars, CST and stirrups of column as well as the fracture of FRP strips and PVC tube. The ultimate bearing capacity decreases as FRP strips spacing or joint height increases. The effects of other three studied parameters on ultimate bearing capacity are not obvious. The strain development rules of longitudinal steel bars, PVC tube, FRP strips, column stirrups and CST are revealed. The effects of various studied parameters on stiffness are also examined. Additionally, an influence coefficient of joint height is introduced based on the regression analysis of test data, a theoretical formula for predicting bearing capacity is proposed and it agrees well with test data.