DOI QR코드

DOI QR Code

Statistical-based evaluation of design codes for circular concrete-filled steel tube columns

  • Li, Na (School of Civil Engineering, Wuhan University) ;
  • Lu, Yi-Yan (School of Civil Engineering, Wuhan University) ;
  • Li, Shan (School of Civil Engineering, Wuhan University) ;
  • Liang, Hong-Jun (School of Civil Engineering, Wuhan University)
  • Received : 2013.12.03
  • Accepted : 2014.08.04
  • Published : 2015.02.25

Abstract

This study addresses the load capacity prediction of circular concrete-filled steel tube (CFST) columns under axial compression using current design codes. Design methods given in the Chinese code CECS 28:2012 (2012), American code AISC 360-10 (2010) and EC4 (2004) are presented and described briefly. A wide range of experimental data of 353 CFST columns is used to evaluate the applicability of CECS 28:2012 in calculating the strength of circular CFST columns. AISC 360-10 and EC4 (2004) are also compared with the test results. The comparisons indicate that all three codes give conservative predictions for both short and long CFST columns. The effects of concrete strength, steel strength and diameter-to-thickness ratio on the accuracy of prediction according to CECS 28:2012 are discussed, which indicate a possibility of extending the limitations on the material strengths and diameter-to-thickness ratio to higher values. A revised equation for slenderness reduction factor in CECS 28:2012 is given.

Keywords

Acknowledgement

Supported by : Wuhan University of Technology, Central Universities

References

  1. Abed, F., Al-Hamaydeh, M. and Abdalla, S. (2013), "Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs)", J. Constr. Steel Res., 80, 429-439. https://doi.org/10.1016/j.jcsr.2012.10.005
  2. Abdalla, S., Abed, F. and Al-Hamaydeh, M. (2013), "Behavior of CFSTs and CCFSTs under quasi-static axial compression", J. Constr. Steel Res., 90, 235-244. https://doi.org/10.1016/j.jcsr.2013.08.007
  3. American Institute of Steel Construction (2005), ANSI/AISC 360-05, Specification for Structural Steel Buildings, Chicago, IL, USA.
  4. American Institute of Steel Construction (2010), ANSI/AISC 360-10, Specification for Structural Steel Buildings, Chicago, IL, USA.
  5. An, Y.F., Han, L.H. and Zhao, X.L. (2012), "Behaviour and design calculations on very slender thin-walled CFST columns", Thin-Wall. Struct., 53, 161-175. https://doi.org/10.1016/j.tws.2012.01.011
  6. Australia Standard (2001), AS3600, Reinforced concrete structures, Sydney, Autralia.
  7. Australia Standard (2004), AS5100, Bridge design Part 6: Steel and composite construction, Sydney, Australia.
  8. Australia Standards (1998), AS4100, Steel structures, Sydney, Australia.
  9. Beck, A.T., Oliveira, W.L.A. and De Nardin, S. (2009), "Reliability-based evaluation of design code provisions for circular concrete-filled steel columns", Eng. Struct., 31(10), 2299-2308. https://doi.org/10.1016/j.engstruct.2009.05.004
  10. Bradford, A., Loh, H.Y. and Uy, B. (2002), "Slenderness limits for filled circular steel tubes", J. Constr. Steel Res., 58 (2), 243-252. https://doi.org/10.1016/S0143-974X(01)00043-8
  11. Cai, S.H. (2007), Modern Steel Tube Confined Concrete Structures, China Communications Press, Beijing, China.
  12. Chen, Z.Y., Zhu, J.Q. and Wu, P.G. (1992), High Strength Concrete and its Application, Tsinghua University Press, Beijing, China.
  13. China Engineering Construction Standard (1990), CECS 28:90, Technical specification for concrete-filled steel tubular structures, Beijing, China.
  14. China Engineering Construction Standard (2012), CECS 28:2012, Technical specification for concrete-filled steel tubular structures, Beijing, China.
  15. Chitawadagi, M.V., Narasimhan, M.C. and Kulkarni, S.M. (2010), "Axial strength of circular concrete-filled steel tube columns - DOE approach", J. Constr. Steel Res., 66(10), 1248-1260. https://doi.org/10.1016/j.jcsr.2010.04.006
  16. Dundu, M. (2012), "Compressive strength of circular concrete filled steel tube columns", Thin-Wall. Struct., 56, 62-70. https://doi.org/10.1016/j.tws.2012.03.008
  17. Ellobody, E., Young, B. and Lam, D. (2006), "Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns", J. Constr. Steel Res., 62(7), 706-715. https://doi.org/10.1016/j.jcsr.2005.11.002
  18. European Committee for Standardization (2003), EN 1993-1-1:2003, Design of steel structures, Part 1-1: General rules and rules for buildings, London, UK.
  19. European Committee for Standardization (2004), EN 1994-1-1:2004, Design of composite steel and concrete structures, Part 1-1: General rules and rules for buildings, London, UK.
  20. Fujimoto, T., Mukai, A. and Nishiyama, I. (2004), "Behavior of eccentrically loaded concrete-filled steel tubular columns", J. Struct. Eng., 130(2), 203-212. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(203)
  21. Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001
  22. Gupta, P.K., Sarda, S.M. and Kumar, M.S. (2007), "Experimental and computational study of concrete filled steel tubular columns under axial loads", J. Constr. Steel Res., 63(2), 182-193. https://doi.org/10.1016/j.jcsr.2006.04.004
  23. Hajjar, J.F. and Gourley, B.C. (1996), "Representation of concrete-filled steel tube cross-section strength", J. Struct. Eng., 122(11), 1327-1336. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:11(1327)
  24. Han, L.H. (2000a), "The influence of concrete compaction on the strength of concrete filled steel tubes", Adv. Struct. Eng., 3(2), 131-137. https://doi.org/10.1260/1369433001502076
  25. Han, L.H. (2000b), "Tests on concrete filled steel tubular columns with high slenderness ratio", Adv. Struct. Eng., 3(4), 337-344. https://doi.org/10.1260/1369433001502265
  26. Han, L.H. and Yao, G.H. (2004), "Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC)", Thin-Wall. Struct., 42(9), 1357-1377. https://doi.org/10.1016/j.tws.2004.03.016
  27. Han, L.H., Yao, G.H. and Zhao, X.L. (2005), "Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)", J. Constr. Steel Res., 61(9), 1241-1269. https://doi.org/10.1016/j.jcsr.2005.01.004
  28. Hu, H.T., Huang, C.S. and Chen, Z.L. (2005), "Finite element analysis of CFST columns subjected to an axial compressive force and bending moment in combination", J. Constr. Steel Res., 61(12), 1692-1712. https://doi.org/10.1016/j.jcsr.2005.05.002
  29. Kato, B. (1996), "Column curves of steel-concrete composite members", J. Constr. Steel Res., 39(2), 121-135. https://doi.org/10.1016/S0143-974X(96)00030-2
  30. Lee, S.H., Uy, B. and Kim, S.H. (2011), "Behavior of high-strength circular concrete-filled steel tubular (CFST) column under eccentric loading", J. Constr. Steel Res., 67(1), 1-13. https://doi.org/10.1016/j.jcsr.2010.07.003
  31. Liang, Q.Q. and Fragomeni, S. (2009), "Nonlinear analysis of circular concrete-filled steel tubular short columns under axial loading", J. Constr. Steel Res., 65(12), 2186-2196. https://doi.org/10.1016/j.jcsr.2009.06.015
  32. National Standard of the People's Republic of China (2010), GB 50010-2010, Code for design of concrete structures, Beijing, China.
  33. Oliveira, W.L.A., Nardin, S.D., Debs, A.L.H.C. and Debs, M.K.E. (2009), "Influence of concrete strength and length/diameter on the axial capacity of CFST columns", J. Constr. Steel Res., 65(12), 2103-2110. https://doi.org/10.1016/j.jcsr.2009.07.004
  34. Oliveira, W.L.A., Nardin, S.D., Debs, A.L.H.C. and Debs, M.K.E. (2010), "Evaluation of passive confinement in CFST columns", J. Constr. Steel Res., 2010, 66(4), 487-495. https://doi.org/10.1016/j.jcsr.2009.11.004
  35. O'Shea, M.D. and Bridge, R.Q. (2000), "Design of circular thin-walled concrete filled steel tubes", J. Struct. Eng., 126(11), 1295-1303. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295)
  36. Portoles, J.M., Romero, M.L. and Bonet, J.L. (2011a), "Experimental study of high strength concrete-filled circular tubular columns under eccentric loading", J. Constr. Steel Res., 67(4), 623-633. https://doi.org/10.1016/j.jcsr.2010.11.017
  37. Portoles, J.M., Romero, M.L. and Filippou, F.C. (2011b), "Simulation and design recommendations of eccentrically loaded slender concrete-filled tubular columns", Eng. Struct., 33(5), 1576-1593. https://doi.org/10.1016/j.engstruct.2011.01.028
  38. Probst, A.D., Kang, T.H.K. and Ramseyer, C. (2010), "Composite flexural behavior of full-scale concrete-filled tubes without axial loads", J. Struct. Eng., 136(11), 1401-1412. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000241
  39. Pu, X.C. (2004), Super High Strength High Performance Concrete, Chongqing University Press, Chongqing, China.
  40. Roeder, C.W., Cameron, B. and Brown, C.B. (1999), "Composite action in concrete filled tubes", J. Struct. Eng., 125(5), 477-484. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:5(477)
  41. Sakino, K., Nakahara, H. and Morino, S. (2004), "Behavior of Centrally Loaded Concrete-Filled Steel-Tube Short Columns", J. Struct. Eng., 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)
  42. Schneider, S.P. (1998), "Axially loaded concrete-filled steel tubes", J. Struct. Eng., 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
  43. Shanmugam, N.E. and Lakshmi, B. (2001), "State of the art report on steel-concrete composite columns", J. Constr. Steel Res., 57(10), 1041-1080. https://doi.org/10.1016/S0143-974X(01)00021-9
  44. Susantha, K.A.S., Ge, H.B. and Usami, T. (2001), "A capacity prediction procedure for concrete filled steel columns", J. Earthq. Eng., 5(4), 483-520. https://doi.org/10.1080/13632460109350403
  45. Tan, K.F. and Pu, X.C. (2000), "Study on behavior and load bearing capacities of slender steel tubular columns and eccentrically loaded steel tubular columns filled with extra-high strength concrete", J. Build. Struct., 21(2), 12-19.
  46. Tan, K.F., Pu, X.C. and Cai, S.H. (1999), "Study on the mechanical properties of steel extra-high strength concrete encased in steel tubes", J. Build. Struct., 20(1), 10-15.
  47. Uy. B., Tao, Z. and Han, L.H. (2011), "Behaviour of short and slender concrete-filled stainless steel tubular columns", J. Constr. Steel Res., 67(3), 360-378. https://doi.org/10.1016/j.jcsr.2010.10.004
  48. Yu, Z.W., Ding, F.X. and Cai, C.S. (2007), "Experimental behavior of circular concrete-filled steel tube stub columns", J. Constr. Steel Res., 63(2), 165-174. https://doi.org/10.1016/j.jcsr.2006.03.009
  49. Yu, Q., Tao, Z. and Wu, Y.X. (2008), "Experimental behaviour of high performance concrete-filled steel tubular columns", Thin-Wall. Struct., 46(4), 362-370. https://doi.org/10.1016/j.tws.2007.10.001
  50. Zeghiche, J. and Chaoui, K. (2005), "An experimental behaviour of concrete-filled steel tubular columns", J. Constr. Steel Res., 61(1), 53-66. https://doi.org/10.1016/j.jcsr.2004.06.006
  51. Zhang, S.M. and Wang, Y.Y. (2004), "Failure modes of short columns of high-strength concrete-filled steel tubes", China Civ. Eng. J., 37(9), 1-10.
  52. Zhang, Y.C., Wang, Q.P., Mao, X.Y. and Cao, B.Z. (2005), "Research on Mechanics Behavior of Stub-column of Concrete-filled Thin-walled Steel Tube under Axial Load", Build. Struct., 35(1), 22-27.

Cited by

  1. Slenderness effects on concrete-filled steel tube columns confined with CFRP vol.143, 2018, https://doi.org/10.1016/j.jcsr.2017.12.014
  2. Stress-transfer in concrete encased and filled tube square columns employed in top-down construction vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.063
  3. A constitutive model for confined concrete in composite structures vol.24, pp.6, 2017, https://doi.org/10.12989/scs.2017.24.6.689
  4. Seismic behavior of SFRC shear wall with CFST columns vol.28, pp.5, 2015, https://doi.org/10.12989/scs.2018.28.5.527
  5. AN INVESTIGATION INTO WORKING BEHAVIOR CHARACTERISTICS OF PARABOLIC CFST ARCHES APPLYING STRUCTURAL STRESSING STATE THEORY vol.25, pp.3, 2015, https://doi.org/10.3846/jcem.2019.8102
  6. Axial compressive behaviour of steel fibre reinforced self-stressing and self-compacting concrete-filled steel tube columns vol.222, pp.None, 2015, https://doi.org/10.1016/j.engstruct.2020.111108
  7. Ultimate axial capacity prediction of CCFST columns using hybrid intelligence models - a new approach vol.40, pp.3, 2021, https://doi.org/10.12989/scs.2021.40.3.461
  8. Genetic algorithm hybridized with eXtreme gradient boosting to predict axial compressive capacity of CCFST columns vol.278, pp.None, 2021, https://doi.org/10.1016/j.compstruct.2021.114733