Acknowledgement
Supported by : Wuhan University of Technology, Central Universities
References
- Abed, F., Al-Hamaydeh, M. and Abdalla, S. (2013), "Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs)", J. Constr. Steel Res., 80, 429-439. https://doi.org/10.1016/j.jcsr.2012.10.005
- Abdalla, S., Abed, F. and Al-Hamaydeh, M. (2013), "Behavior of CFSTs and CCFSTs under quasi-static axial compression", J. Constr. Steel Res., 90, 235-244. https://doi.org/10.1016/j.jcsr.2013.08.007
- American Institute of Steel Construction (2005), ANSI/AISC 360-05, Specification for Structural Steel Buildings, Chicago, IL, USA.
- American Institute of Steel Construction (2010), ANSI/AISC 360-10, Specification for Structural Steel Buildings, Chicago, IL, USA.
- An, Y.F., Han, L.H. and Zhao, X.L. (2012), "Behaviour and design calculations on very slender thin-walled CFST columns", Thin-Wall. Struct., 53, 161-175. https://doi.org/10.1016/j.tws.2012.01.011
- Australia Standard (2001), AS3600, Reinforced concrete structures, Sydney, Autralia.
- Australia Standard (2004), AS5100, Bridge design Part 6: Steel and composite construction, Sydney, Australia.
- Australia Standards (1998), AS4100, Steel structures, Sydney, Australia.
- Beck, A.T., Oliveira, W.L.A. and De Nardin, S. (2009), "Reliability-based evaluation of design code provisions for circular concrete-filled steel columns", Eng. Struct., 31(10), 2299-2308. https://doi.org/10.1016/j.engstruct.2009.05.004
- Bradford, A., Loh, H.Y. and Uy, B. (2002), "Slenderness limits for filled circular steel tubes", J. Constr. Steel Res., 58 (2), 243-252. https://doi.org/10.1016/S0143-974X(01)00043-8
- Cai, S.H. (2007), Modern Steel Tube Confined Concrete Structures, China Communications Press, Beijing, China.
- Chen, Z.Y., Zhu, J.Q. and Wu, P.G. (1992), High Strength Concrete and its Application, Tsinghua University Press, Beijing, China.
- China Engineering Construction Standard (1990), CECS 28:90, Technical specification for concrete-filled steel tubular structures, Beijing, China.
- China Engineering Construction Standard (2012), CECS 28:2012, Technical specification for concrete-filled steel tubular structures, Beijing, China.
- Chitawadagi, M.V., Narasimhan, M.C. and Kulkarni, S.M. (2010), "Axial strength of circular concrete-filled steel tube columns - DOE approach", J. Constr. Steel Res., 66(10), 1248-1260. https://doi.org/10.1016/j.jcsr.2010.04.006
- Dundu, M. (2012), "Compressive strength of circular concrete filled steel tube columns", Thin-Wall. Struct., 56, 62-70. https://doi.org/10.1016/j.tws.2012.03.008
- Ellobody, E., Young, B. and Lam, D. (2006), "Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns", J. Constr. Steel Res., 62(7), 706-715. https://doi.org/10.1016/j.jcsr.2005.11.002
- European Committee for Standardization (2003), EN 1993-1-1:2003, Design of steel structures, Part 1-1: General rules and rules for buildings, London, UK.
- European Committee for Standardization (2004), EN 1994-1-1:2004, Design of composite steel and concrete structures, Part 1-1: General rules and rules for buildings, London, UK.
- Fujimoto, T., Mukai, A. and Nishiyama, I. (2004), "Behavior of eccentrically loaded concrete-filled steel tubular columns", J. Struct. Eng., 130(2), 203-212. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(203)
- Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001
- Gupta, P.K., Sarda, S.M. and Kumar, M.S. (2007), "Experimental and computational study of concrete filled steel tubular columns under axial loads", J. Constr. Steel Res., 63(2), 182-193. https://doi.org/10.1016/j.jcsr.2006.04.004
- Hajjar, J.F. and Gourley, B.C. (1996), "Representation of concrete-filled steel tube cross-section strength", J. Struct. Eng., 122(11), 1327-1336. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:11(1327)
- Han, L.H. (2000a), "The influence of concrete compaction on the strength of concrete filled steel tubes", Adv. Struct. Eng., 3(2), 131-137. https://doi.org/10.1260/1369433001502076
- Han, L.H. (2000b), "Tests on concrete filled steel tubular columns with high slenderness ratio", Adv. Struct. Eng., 3(4), 337-344. https://doi.org/10.1260/1369433001502265
- Han, L.H. and Yao, G.H. (2004), "Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC)", Thin-Wall. Struct., 42(9), 1357-1377. https://doi.org/10.1016/j.tws.2004.03.016
- Han, L.H., Yao, G.H. and Zhao, X.L. (2005), "Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)", J. Constr. Steel Res., 61(9), 1241-1269. https://doi.org/10.1016/j.jcsr.2005.01.004
- Hu, H.T., Huang, C.S. and Chen, Z.L. (2005), "Finite element analysis of CFST columns subjected to an axial compressive force and bending moment in combination", J. Constr. Steel Res., 61(12), 1692-1712. https://doi.org/10.1016/j.jcsr.2005.05.002
- Kato, B. (1996), "Column curves of steel-concrete composite members", J. Constr. Steel Res., 39(2), 121-135. https://doi.org/10.1016/S0143-974X(96)00030-2
- Lee, S.H., Uy, B. and Kim, S.H. (2011), "Behavior of high-strength circular concrete-filled steel tubular (CFST) column under eccentric loading", J. Constr. Steel Res., 67(1), 1-13. https://doi.org/10.1016/j.jcsr.2010.07.003
- Liang, Q.Q. and Fragomeni, S. (2009), "Nonlinear analysis of circular concrete-filled steel tubular short columns under axial loading", J. Constr. Steel Res., 65(12), 2186-2196. https://doi.org/10.1016/j.jcsr.2009.06.015
- National Standard of the People's Republic of China (2010), GB 50010-2010, Code for design of concrete structures, Beijing, China.
- Oliveira, W.L.A., Nardin, S.D., Debs, A.L.H.C. and Debs, M.K.E. (2009), "Influence of concrete strength and length/diameter on the axial capacity of CFST columns", J. Constr. Steel Res., 65(12), 2103-2110. https://doi.org/10.1016/j.jcsr.2009.07.004
- Oliveira, W.L.A., Nardin, S.D., Debs, A.L.H.C. and Debs, M.K.E. (2010), "Evaluation of passive confinement in CFST columns", J. Constr. Steel Res., 2010, 66(4), 487-495. https://doi.org/10.1016/j.jcsr.2009.11.004
- O'Shea, M.D. and Bridge, R.Q. (2000), "Design of circular thin-walled concrete filled steel tubes", J. Struct. Eng., 126(11), 1295-1303. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295)
- Portoles, J.M., Romero, M.L. and Bonet, J.L. (2011a), "Experimental study of high strength concrete-filled circular tubular columns under eccentric loading", J. Constr. Steel Res., 67(4), 623-633. https://doi.org/10.1016/j.jcsr.2010.11.017
- Portoles, J.M., Romero, M.L. and Filippou, F.C. (2011b), "Simulation and design recommendations of eccentrically loaded slender concrete-filled tubular columns", Eng. Struct., 33(5), 1576-1593. https://doi.org/10.1016/j.engstruct.2011.01.028
- Probst, A.D., Kang, T.H.K. and Ramseyer, C. (2010), "Composite flexural behavior of full-scale concrete-filled tubes without axial loads", J. Struct. Eng., 136(11), 1401-1412. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000241
- Pu, X.C. (2004), Super High Strength High Performance Concrete, Chongqing University Press, Chongqing, China.
- Roeder, C.W., Cameron, B. and Brown, C.B. (1999), "Composite action in concrete filled tubes", J. Struct. Eng., 125(5), 477-484. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:5(477)
- Sakino, K., Nakahara, H. and Morino, S. (2004), "Behavior of Centrally Loaded Concrete-Filled Steel-Tube Short Columns", J. Struct. Eng., 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)
- Schneider, S.P. (1998), "Axially loaded concrete-filled steel tubes", J. Struct. Eng., 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
- Shanmugam, N.E. and Lakshmi, B. (2001), "State of the art report on steel-concrete composite columns", J. Constr. Steel Res., 57(10), 1041-1080. https://doi.org/10.1016/S0143-974X(01)00021-9
- Susantha, K.A.S., Ge, H.B. and Usami, T. (2001), "A capacity prediction procedure for concrete filled steel columns", J. Earthq. Eng., 5(4), 483-520. https://doi.org/10.1080/13632460109350403
- Tan, K.F. and Pu, X.C. (2000), "Study on behavior and load bearing capacities of slender steel tubular columns and eccentrically loaded steel tubular columns filled with extra-high strength concrete", J. Build. Struct., 21(2), 12-19.
- Tan, K.F., Pu, X.C. and Cai, S.H. (1999), "Study on the mechanical properties of steel extra-high strength concrete encased in steel tubes", J. Build. Struct., 20(1), 10-15.
- Uy. B., Tao, Z. and Han, L.H. (2011), "Behaviour of short and slender concrete-filled stainless steel tubular columns", J. Constr. Steel Res., 67(3), 360-378. https://doi.org/10.1016/j.jcsr.2010.10.004
- Yu, Z.W., Ding, F.X. and Cai, C.S. (2007), "Experimental behavior of circular concrete-filled steel tube stub columns", J. Constr. Steel Res., 63(2), 165-174. https://doi.org/10.1016/j.jcsr.2006.03.009
- Yu, Q., Tao, Z. and Wu, Y.X. (2008), "Experimental behaviour of high performance concrete-filled steel tubular columns", Thin-Wall. Struct., 46(4), 362-370. https://doi.org/10.1016/j.tws.2007.10.001
- Zeghiche, J. and Chaoui, K. (2005), "An experimental behaviour of concrete-filled steel tubular columns", J. Constr. Steel Res., 61(1), 53-66. https://doi.org/10.1016/j.jcsr.2004.06.006
- Zhang, S.M. and Wang, Y.Y. (2004), "Failure modes of short columns of high-strength concrete-filled steel tubes", China Civ. Eng. J., 37(9), 1-10.
- Zhang, Y.C., Wang, Q.P., Mao, X.Y. and Cao, B.Z. (2005), "Research on Mechanics Behavior of Stub-column of Concrete-filled Thin-walled Steel Tube under Axial Load", Build. Struct., 35(1), 22-27.
Cited by
- Slenderness effects on concrete-filled steel tube columns confined with CFRP vol.143, 2018, https://doi.org/10.1016/j.jcsr.2017.12.014
- Stress-transfer in concrete encased and filled tube square columns employed in top-down construction vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.063
- A constitutive model for confined concrete in composite structures vol.24, pp.6, 2017, https://doi.org/10.12989/scs.2017.24.6.689
- Seismic behavior of SFRC shear wall with CFST columns vol.28, pp.5, 2015, https://doi.org/10.12989/scs.2018.28.5.527
- AN INVESTIGATION INTO WORKING BEHAVIOR CHARACTERISTICS OF PARABOLIC CFST ARCHES APPLYING STRUCTURAL STRESSING STATE THEORY vol.25, pp.3, 2015, https://doi.org/10.3846/jcem.2019.8102
- Axial compressive behaviour of steel fibre reinforced self-stressing and self-compacting concrete-filled steel tube columns vol.222, pp.None, 2015, https://doi.org/10.1016/j.engstruct.2020.111108
- Ultimate axial capacity prediction of CCFST columns using hybrid intelligence models - a new approach vol.40, pp.3, 2021, https://doi.org/10.12989/scs.2021.40.3.461
- Genetic algorithm hybridized with eXtreme gradient boosting to predict axial compressive capacity of CCFST columns vol.278, pp.None, 2021, https://doi.org/10.1016/j.compstruct.2021.114733