• Title/Summary/Keyword: Steel-Concrete Composite Bridge Deck

Search Result 92, Processing Time 0.029 seconds

Bridge widening with composite steel-concrete girders: application and analysis of live load distribution

  • Yang, Yue;Zhang, Xiaoguang;Fan, Jiansheng;Bai, Yu
    • Advances in concrete construction
    • /
    • v.3 no.4
    • /
    • pp.295-316
    • /
    • 2015
  • A bridge widening technology using steel-concrete composite system was developed and is presented in this paper. The widened superstructure system consists of a newly built composite steel-concrete girder with concrete deck and steel diaphragms attached to the existing concrete girders. This method has been applied in several bridge widening projects in China, and one of those projects is presented in detail. Due to the higher stiffness-to-weight ratio and the rapid erection of composite girders, this widening method reveals benefits in both mechanical performance and construction. As only a few methods for the design of bridges with different types of girders are recommended in current design codes, a more accurate analytical method of estimating live load distribution on girder bridges was developed. In the analytical model, the effects of span length, girder pacing, diaphragms, concrete decks were considered, as well as the torsional and flexural stiffness of both composite box girders and concrete T girders. The study shows that the AASHTO LRFD specification procedures and the analytical models proposed in this paper closely approximate the live load distribution factors determined by finite element analysis. A parametric study was also conducted using the finite element method to evaluate the potential load carrying capacities of the existing concrete girders after widening.

Shear-lag effect in twin-girder composite decks

  • Dezi, Luigino;Gara, Fabrizio;Leoni, Graziano
    • Steel and Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.111-122
    • /
    • 2003
  • The paper presents a model for analysing the shear-lag effect on the slab of twin-girder composite decks subjected to static actions, support settlements and concrete shrinkage, which are the main actions of interest in composite bridge design. The proposed model includes concrete creep behaviour and shear connection flexibility. The shear-lag in the slab is accounted for by means of a new warping function. The considered actions are then applied to a realistic bridge deck and their effects are discussed. The proposed method is utilised to determine the slab effective widths for three different width-length ratios of the deck. Finally, a comparison between the results obtained with the Eurocode EC4-2 and those obtained with the proposed model is performed.

An Experimental Study on the shear connection for UHPC Deck Bridge (초고성능 콘크리트 바닥판 교량의 전단연결부에 대한 실험적 연구)

  • Yoo, Dong-Min;Hwang, Hoon-Hee;Kim, Sung-Tae;Park, Sung-Young
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.29-33
    • /
    • 2011
  • The application of high performance materials for the deck can represent a fair alternative to reduce the weight of the deck and improve the econimic efficiency of the bridge even if high performance materials are costly. In UHPC(Ultra High Performance Concrete) bridges, it is necessary to verify that exiting headed stud can be used to transfer longitudinal shear forces across the steel-concrete interface. In this paper, the push-out tests are performed to analisys the composite behavior between UHPC bridge deck and steel girder. The ultimate strength of test specimens is proportional to the diameter of headed studs in push-out test for static loading. Test results show that the shear strength of headed stud is improved for the case of normal concrete bridge decks.

Static and fatigue performance of short group studs connector in novel post-combination steel-UHPC composite deck

  • Han Xiao;Wei Wang;Chen Xu;Sheraz Abbas;Zhiping Lin
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.659-674
    • /
    • 2024
  • Casting Ultra High-Performance Concrete (UHPC) on an orthotropic steel deck and forming a composite action by connectors could improve the steel deck fatigue performance. This study presents the mechanical performance of a proposed post-combination connection between UHPC and steel, which had a low constraint effect on UHPC shrinkage. A total of 10 push-out tests were conducted for static and fatigue performance investigations. And the test results were compared with evaluation methods in codes to verify the latter's applicability. Meanwhile, nonlinear simulation and parametric works with material damage plasticity models were also conducted for the static and fatigue failure mechanism understanding. The static and fatigue test results both showed that fractures at stud roots and surrounding local UHPC crushes were the main failure appearances. Compared with normally arranged studs, group arrangement could result in reductions of static stud shear stiffness, strength, and fatigue lives, which were about 18%, 12%, and 27%, respectively. Compared with the test results, stud shear capacity and fatigue lives evaluations based on the codes of AASHTO, Eurocode 4, JSCE and JTG D64 could be applicable in general while the safety redundancies tended to be smaller or even insufficient for group studs. The analysis results showed that arranging studs in groups caused obviously uneven strain distributions. The severer stress concentration and larger strain ranges caused the static and fatigue performance degradations of group studs. The research outcome provides a very important basis for establishing a design method of connections in the novel post-combination steel-UHPC composite deck.

Experimental Study on the Flexural Behavior of Inverted T-Shaped Steel·Concrete Composite Deck for Bridges (역T형강·콘크리트 합성바닥판의 휨거동에 관한 실험적 연구)

  • Kim, Sung Hoon;Park, Young Hoon;Lee, Seung Yong;Choi, Jun Hyeok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.331-340
    • /
    • 2008
  • This study is to suggest the details of new concept of bridge deck. Experimental studies on the behavior of a inverted T-shaped steelconcrete composite deck were carried out. The part of inverted T-shaped steel is embedded in concrete. Reinforced concrete deck specimen and composite deck specimens were fabricated and static bending fracture tests were conducted. The ultimate strength and fracture strength of specimens were evaluated. The effects of shear hole crossing bars of composite deck were also analyzed. From the results of experiments, composite deck with shear hole crossing bar increased shear strength, and showed typical tensile failure. Ultimate strength and fracture strength of composite deck with shear hole crossing bar are higher than those of reinforced concrete deck. The displacement of composite deck is higher than that of reinforced concrete deck.

Shear performance of an innovative UHPFRC deck of composite bridge with coarse aggregate

  • Qi, Jianan;Wanga, Jingquan;Feng, Yu
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.219-229
    • /
    • 2019
  • This paper presents an experimental study on the structural performance of an innovative ultra-high performance fiber reinforced concrete (UHPFRC) deck with coarse aggregate of composite bridge under shear force. Test parameters included curing method and shear span-to-height ratio. Test results indicated that more short fine cracks developed beside the existing cracks due to the randomly dispersed fibers, resulting in re-distributing and homogenizing of the concrete stress beside cracks and allowing for the occurrence of more cracks with small spacing compared to normal strength concrete beams. Curing methods, incorporating steam curing and natural curing, did not have obvious effect on the nominal bending cracking strength and the ultimate strength of the test specimens. Shear reinforcement need not be provided for UHPFRC decks with a fiber volume fraction of 2%. UHPFRC decks showed superior load resistance ability after the appearance of cracks and excellent post-cracking deformability. Lastly, the current shear provisions were evaluated by the test results.

Design of Dang-San Steel Railway Bridge (당산철교의 설계)

  • 유동호;김선일
    • Computational Structural Engineering
    • /
    • v.12 no.4
    • /
    • pp.69-69
    • /
    • 1999
  • Design of Dangsan Steel Railway Bridge(a part of Seoul Subway Line NO. 2), which is supposed to be replaced after its 15years survice, was done, and the reconstruction has begun in Dec. 1997. The design include new superstruc-ture and bridge piers, retrofitting of the foun-dation, rail system, electric and signal, etc. In this paper, design of the structure is mainly summarized. The main span superstructure, across Han river, is composite section which is com-posed of steel box and reinforced concrete deck slab with 9 span continuous. The superstructure for the approaches is bottom througth type 2-cell steel box girder with steel floor system and concrete deck slab with 3 or 4 span continuous. The bridge piers was planned to be reconstructed based upon the result from the various investi-gations, while the foundation(cassion and pile foundation) was planned to be retrofitted. For superstructure erection, the method of combination of barge bent and heavy lifting and the launching truss method was investigated for the main span and approach spans, respectively.

  • PDF

Estimation of Live Load Moment for Concrete Unfilled Steel Grid Deck Using Main Bearing Bar Distribution Factor (하중분배 계수를 적용한 비충전 강합성 바닥판 활하중 모멘트 산정)

  • Park, Young hoon;Kim, Sung Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1667-1676
    • /
    • 2014
  • Because of the different flexural rigidity between longitudinal and transverse direction, orthotropic plate theory may be suitable for describing the behavior of composite deck. The ratio of flexural rigidity between longitudinal and transverse direction affects the live load moment. Because of the ratio of flexural rigidity of concrete unfilled steel grid deck has a direct relationship with main bearing bar spacing, it is concluded that the study for the distribution factor which is effected by main bearing bar spacing and aspect ratio is needed. In this study, evaluate the live load moment of concrete unfilled steel grid deck using the AASHTO LRFD Bridge Design Specification and presents the distribution coefficient equation for concrete unfilled steel grid deck.

Analysis of composite girders with hybrid GFRP hat-shape sections and concrete slab

  • Alizadeh, Elham;Dehestani, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1135-1152
    • /
    • 2015
  • Most of current bridge decks are made of reinforced concrete and often deteriorate at a relatively rapid rate in operational environments. The quick deterioration of the deck often impacts other critical components of the bridge. Another disadvantage of the concrete deck is its high weight in long-span bridges. Therefore, it is essential to examine new materials and innovative designs using hybrid system consisting conventional materials such as concrete and steel with FRP plates which is also known as composite deck. Since these decks are relatively new, so it would be useful to evaluate their performances in more details. The present study is dedicated to Hat-Shape composite girder with concrete slab. The structural performance of girder was evaluated with nonlinear finite element method by using ABAQUS and numerical results have been compared with experimental results of other researches. After ensuring the validity of numerical modeling of composite deck, parametric studies have been conducted; such as investigating the effects of constituent properties by changing the compressive strength of concrete slab and Elasticity modulus of GFRP materials. The efficacy of the GFRP box girders has been studied by changing GFRP material to steel and aluminum. In addition, the effect of Cross-Sectional Configuration has been evaluated. It was found that the behavior of this type of composite girders can be studied with numerical methods without carrying out costly experiments. The material properties can be modified to improve ultimate load capacity of the composite girder. strength-to-weight ratio of the girder increased by changing the GFRP material to aluminum and ultimate load capacity enhanced by deformation of composite girder cross-section.

Experimental Study on Flexural Behavior of CFT Girder-Deck Composite Section (콘크리트 충전 강관 거더-바닥판 합성단면의 휨거동에 관한 실험적 연구)

  • Chin, Won-Jong;Kang, Jae-Yoon;Choi, Eun-Suk;Lee, Jung-Woo;Lee, Heung-Soo;Kwark, Jong-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.166-169
    • /
    • 2006
  • A new bridge system described in this paper uses concrete-filled steel tube (CFT) girders as a replacement for conventional girders. Experimental investigations were carried out to comprehend the flexural behavior of CFT girder-slab deck composite section. The experimental investigation consisted of designing and constructing a test specimen and loading it to collapse in bending to check the applicability of the system. The test results showed that concrete filled steel tube girders have good ductility and maintain its strength up to the end of the loading. In the test, the flexural behavior of each specimen of CFT girder-deck composite section is identified.

  • PDF