References
- CEB-FIP model code 1990 (1988), C.E.B. Bullettin d'Information n. 190, C.E.B. - F.I.P. Comite Euro-International du Beton, Paris.
- Chiorino, M.A., Napoli, P., Mola, F. and Koprna, M. (1984), C.E.B. design manual on structural effects on timedependent behaviour of concrete, C.E.B. Bullettin d'Information n. 142/142bis, Georgi Publishing Co., Saint- Saphorin, Switzerland.
- Dezi, L., Gara, F., Leoni, G., and Tarantino, A. M. (2001), "Time-dependent analysis of shear-lag effect in composite beams", J. Mech. Engrg., ASCE, 127(1), 71-79. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:1(71)
- Dezi, L., and Mentrasti, L. (1985), "Nonuniform bending-stress distribution (Shear-lag)", J. Struct. Engrg., ASCE, 111(12), 2675-2690. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:12(2675)
- EC4-2 (1997), EUROCODE 4: Design of composite steel and concrete structures - Part 2: Bridges, European Committee for Standardization.
- Gara, F., Leoni, G., and Tarantino, A. M. (2001), "Mutual effects between creep, connection deformability and shear-lag in steel-concrete composite bridges", Proceedings of Concreep-6, 20-22 August 2001, M.I.T. Cambridge, USA, 785-790.
- Laudiero, F., and Savoia, M. (1990), "Shear strain effects in flexure and torsion of thin-walled beams with open or closed cross-section", Thin Walled Structures, 10, 87-119. https://doi.org/10.1016/0263-8231(90)90058-7
- Newmark, N. M., Siess, C. P., and Viest, I. M. (1951), "Test and analysis of composite beams with incomplete interaction", Proc. Soc. Exp. Stress Anal., 9(1), 75-92.
- Reissner, E. (1946), "Analysis of shear-lag in box beams by the principle of the minimum potential energy", Quarterly of Appl. Math., 4(3), 268-278. https://doi.org/10.1090/qam/17176
- Sedlacek, G., and Bild, S. (1993), "A simplified method for the determination of the effective width due to shear lag effects", J. Construct. Steel Research, 24, 155-182. https://doi.org/10.1016/0143-974X(93)90042-Q
- Von Karman, Th. (1924), "Beitrag zur technischen mechanik und technischen physik", A. Foppl-Festschroft, 114-127.
Cited by
- Time-Dependent Analysis of Long-Span, Concrete-Filled Steel Tubular Arch Bridges vol.19, pp.4, 2014, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000549
- A beam finite element including shear lag effect for the time-dependent analysis of steel–concrete composite decks vol.31, pp.8, 2009, https://doi.org/10.1016/j.engstruct.2009.03.017
- State of the art on the time-dependent behaviour of composite steel–concrete structures vol.80, 2013, https://doi.org/10.1016/j.jcsr.2012.08.005
- Generalised Beam Theory (GBT) for composite beams with partial shear interaction vol.99, 2015, https://doi.org/10.1016/j.engstruct.2015.05.025
- Coupled Mechanism on Interfacial Slip and Shear Lag for Twin-Cell Composite Box Beam Under Even Load 2018, https://doi.org/10.1017/jmech.2017.77
- Closure to “Effective Slab Width in Prestressed Twin-Girder Composite Decks” by Luigino Dezi, Fabrizio Gara, and Graziano Leoni vol.134, pp.4, 2008, https://doi.org/10.1061/(ASCE)0733-9445(2008)134:4(685)
- Effective Slab Width in Prestressed Twin-Girder Composite Decks vol.132, pp.9, 2006, https://doi.org/10.1061/(ASCE)0733-9445(2006)132:9(1358)
- Generalised Beam Theory for composite beams with longitudinal and transverse partial interaction vol.22, pp.10, 2017, https://doi.org/10.1177/1081286516653799
- Analytical solutions for composite beams with slip, shear-lag and time-dependent effects vol.152, 2017, https://doi.org/10.1016/j.engstruct.2017.08.071
- Natural vibration analysis of steel–concrete composite box beam using improved finite beam element method 2018, https://doi.org/10.1177/1369433217734638
- Simplified method of analysis accounting for shear-lag effects in composite bridge decks vol.67, pp.10, 2011, https://doi.org/10.1016/j.jcsr.2011.04.013
- Positive and negative shear lag behaviors of composite twin-girder decks with varying cross-section vol.60, pp.1, 2017, https://doi.org/10.1007/s11431-016-0314-x
- A higher order steel–concrete composite beam model vol.80, 2014, https://doi.org/10.1016/j.engstruct.2014.09.002
- Beam Finite Element Including Shear Lag Effect of Extra-Wide Concrete Box Girders vol.23, pp.11, 2018, https://doi.org/10.1061/(ASCE)BE.1943-5592.0001297
- The Effect of Shear Lag on Long-Term Behavior of Steel/Concrete Composite Beams vol.255, pp.None, 2003, https://doi.org/10.4028/www.scientific.net/amr.255-260.1070
- Short- and long-term analyses of shear lag in RC box girders considering axial equilibrium vol.62, pp.6, 2003, https://doi.org/10.12989/sem.2017.62.6.725
- Shear lag effects on wide U-section pre-stressed concrete light rail bridges vol.68, pp.1, 2003, https://doi.org/10.12989/sem.2018.68.1.067
- New extended grillage methods for the practical and precise modeling of concrete box-girder bridges vol.23, pp.6, 2020, https://doi.org/10.1177/1369433219891559
- Investigation of shear lag effect on tension members fillet-welded connections consisting of single and double channel sections vol.74, pp.3, 2003, https://doi.org/10.12989/sem.2020.74.3.445
- Finite Elements for Higher Order Steel-Concrete Composite Beams vol.11, pp.2, 2021, https://doi.org/10.3390/app11020568
- Effective width of steel-concrete composite beams under negative moments in service stages vol.38, pp.4, 2003, https://doi.org/10.12989/scs.2021.38.4.415