• Title/Summary/Keyword: Steel tube

Search Result 1,102, Processing Time 0.038 seconds

Unified prediction models for mechanical properties and stress-strain relationship of dune sand concrete

  • Said Ikram Sadat;Fa-xing Ding;Fei Lyu;Naqi Lessani;Xiaoyu Liu;Jian Yang
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.595-606
    • /
    • 2023
  • Dune sand (DS) has been widely used as a partial replacement for regular sand in concrete construction. Therefore, investigating its mechanical properties is critical for the analysis and design of structural elements using DS as a construction material. This paper presents a comprehensive investigation of the mechanical properties of DS concrete, considering different replacement ratios and strength grades. Regression analysis is utilized to develop strength prediction models for different mechanical properties of DS concrete. The proposed models exhibit high calculation accuracy, with R2 values of 0.996, 0.991, 0.982, and 0.989 for cube compressive strength, axial compressive strength, splitting tensile strength, and elastic modulus, respectively, and an error within ±20%. Furthermore, a stress-strain relationship specific to DS concrete is established, showing good agreement with experimental results. Additionally, nonlinear finite element analysis is performed on concrete-filled steel tube columns incorporating DS concrete, utilizing the established stress-strain relationship. The analytical and experimental results exhibit good agreement, confirming the validity of the proposed stress-strain relationship for DS concrete. Therefore, the findings presented in this paper provide valuable references for the design and analysis of structures utilizing DS concrete as a construction material.

Suggestion on Strength Formula of Square Hollow Section Tubluar Column-to-BeamPinned Connections (각형강관 기둥-보 핀접합부의 내력식 제안)

  • Choi, Sung Mo;Lee, Seong Hui;Lee, Kwang Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.525-534
    • /
    • 2006
  • Column-to-beam pinned connections can cause local moment to the web of a steel tube due to the distance of eccentricity between the row of bolts and the column flange, which possibility deteriorates the load capacity of column. In this study, a square hollow section tubular used finite element analysis of a square hollow section tubular column was carried out, and the column width and thickness, existence and non-existence of internal reinforcement, and existence and non-existence of compressive force were taken as variables to examine the load capacity deterioration of a square column caused by moment. To guarantee the reliability of the finite element results, some specimens were fabricated and tested. The yield line method was applied to suggest the strength formulas of the square tubular column to the beam pinned connections. Based on the study results, the column strength the moment of the square hollow section tubular column to the beam pined connections improved with the increase in the w to strength limitations, a no-reinforcement type of square hollow section tubular column was proposed, and if the limitation values were not satisfied, the reinforcement of the internal column was made mandatory. Therefore, the horizontal -reinforcement type considered the strength increase, and the fabrication of the square hollow section tubular column was ar column that considered its load capacity with the moment for the no-reinforcement and the horizontal-reinforcement types.

A Study on the Equations for Load Carrying Capacities of Concrete Filled tubular Square Column-to-Beam Connections with Combined Cross Diaphragm and Sleeves (복합십자형 CFT 기둥-보 접합부의 내력식에 관한 연구)

  • Choi, Sung Mo;Jung, Do Sub;Kim, Dae Joong;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.419-429
    • /
    • 2005
  • The objective of this study is to clarify the structural features of members consisting of a connection, as part of the previous study on the CFT column-to-beam tensile connection with a combined cross diaphragm. This connection has the following merits: it evenly distributes the stress on the beam flange and the diaphragm and reduces the stress concentration by improving the stress transfer route and restraining the abrupt deformation of the diaphragm. Finite element analysis was performed to find out the stress transfer through the sleeve, which is an important member of the connection with a combined cross diaphragm. The length and thickness of the sleeve were used as variables for the analysis. The analysis results showed that the length and thickness of the sleeve did not influence the capacity of the connection and played the role of a medium for the transfer of the stress from the diaphragm to the filled concrete. It was proposed that the appropriate length of the sleeve have the same value as the diameter of the sleeve and that the appropriate ratio of the sleeve diameter to the sleeve thickness be 20. Two equations for the evaluation of the load carrying the capacity of the connection were also proposed through the modification of the evaluation equation suggested in the previous study.

Study of the corrosion effect of CO2 stream with SO2 and NO2 on a phosphate coated steel tube (SO2 및 NO2 포함 고압 CO2 스트림이 인산염 코팅 CO2 수송관 부식에 미치는 영향)

  • Cho, Meang-Ik;Kang, Seong-Gil;Huh, Cheol;Baek, Jong-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.6973-6979
    • /
    • 2014
  • To mitigate global warming and climate change, many countries are investing massively on the development of CCS technology, which is assumed to be the key technology to reduce $CO_2$ emissions. CCS technology is comprised of the capture, transport, and storage processes. During the capture process, impurities other than $CO_2$ are inevitably flowed into the $CO_2$ stream. In the present study, corrosion characteristics of a phosphate coated tube for $CO_2$ transportation was investigated with a $CO_2$ stream composed of $CO_2$, $H_2O$, $SO_2$, and $NO_2$. The test specimen was a phosphate coated steel tube, which was filled with $CO_2$ stream with the impurities mentioned above. SEM-EDS analysis is conducted to investigate the corrosion behavior. The results showed that although the H2O concentration did not exceed the solubility limit, corrosion occurred in the specimen, which has an inflow of $SO_2$ or $NO_2$. This suggests that the $SO_2$, $NO_2$ and $H_2O$ concentration should be strictly controlled. These results suggest that the $SO_2$ and $NO_2$ concentration should be controlled below 175ppm and 65ppm, respectively.

Regional load deflection rate of multiloop edgewise archwire (Multiloop edgewise arch wire의 부위별 하중변형률)

  • Kim, Byoung-Ho;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.29 no.6 s.77
    • /
    • pp.673-688
    • /
    • 1999
  • This study was conducted in order to analyze the mechanical characteristics of multiloop edgewise archwire (MEAW). The purposes were 1) to compare load deflection rate (LDR) of MEAW with that of various other arch wires in the individual interbracket span, 2) to compare the wire stiffness in the interbracket span with that in the multi-L-loop region (the span from distal border of the bracket of the lateral incisor to the mesial border of the buccal tube of the second molar), and 3) to verify the experimental results with theoretically derived formula. The single L-loops of five different horizontal lengths and multi-L-loops for the upper and lower arches were made out of .$016\times.022$ permachrome stainless steel wire. Straight segment of plain stainless steel, TMA and NiTi wire of the same dimension were prepared. The LDR was measured using Instron model 4466 with the load cell of 50N capacity at cross head speed of 1.0mm/min, and maximum deflection of 1.0mm. Five specimens were tested under each experimental condition. The wire stiffness number for each interbracket region and multi-L-loop region was calculated from the LDR and the interbracket spans. By dividing the theoretical model of multi-L-loop into 35 linear segments, the energy stored in each segment was obtained. Then the LDR and wire stiffness of single L-loop and multi-L-loop were calculated and compared. The findings were as follows : 1) The average LDR of MEAW in the individual interbracket region was 1/1.53 of that of the NiTi,1/2.47 of TMA and 1/5.16 of the plain stainless steel wire. 2) The wire stiffness of MEAW in the multi-L-loop region was 1.53 times larger than that in the interbracket region, and the LDR was almost twice as large as that of NiTi in that region. 3) According to the theoretically derived equation, the wire stiffness of the single L-loop was lower than that of multi-L-loop. The results of this study suggest that MEAW has the unique mechanical Property which could allow individual tooth movement and transmit elastic force effectively through the entire arch wire.

  • PDF

Assembly and Test of the In-cryostat Helium Line for KSTAR (KSTAR 저온용기 내부의 헬륨라인 설치 및 검사)

  • Bang, E.N.;Park, H.T.;Lee, Y.J.;Park, Y.M.;Choi, C.H.;Bak, J.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.153-159
    • /
    • 2007
  • In-cryostat helium lines are under installation to transfer a cryogenic helium into cold components in KSTAR device. In KSTAR, three kinds of helium should be supplied into the cold components, which are supercritical helium Into superconduction(SC) magnet system, liquid helium into current lead system, and gas helium into thermal shields. Cryogenic helium lines consist of transfer lines outside the cryostat, in-cryostat helium lines, and electrical breaks. In-cryostat helium lines should be guaranteed of leak tightness for tong time operation at high internal helium pressure of 20 bar. We wrapped the helium line with multi-layer insulator(MLI) to reduce radiation heat and insulated the surface of the high potential part with prepreg tape. The electrical break was fabricated by brazing ceramic tube with stainless steel tube. To ensure the operation reliability at operation temperature, all the electrical break have been examined by the thermal cycle test at liquid nitrogen and by the hydraulic test at 30 bar. And additional surface insulation was prepared with prepreg tape to give structural safety. At present most of the in-cryostat helium lines have been installed and the final inspection test is progressing.

Effect of Relative Humidity on the Breakthrough of Charcoal Tubes during Mixed Organic Vapor Sampling (혼합 유기용제 포집시 습도가 활성탄관의 파과에 미치는 영향)

  • Yang, Hyeok Syng;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.1
    • /
    • pp.125-137
    • /
    • 1996
  • This study was designed to investigate effects of relative humidity on the breakthrough of charcoal tubes at a fixed vapor concentration and sampling time during mixed organic vapor sampling. A vapor generator was used to generate three different concentrations of mixed organic vapor and a stainless steel chamber was fabricated and utilized to maintain three different percentages of relative humidity while maintaining a constant temperature. The results were as follows; 1. At high relative humidity, breakthrough of mixed organic vapor occurred quickly at low vapor concentration than at high vapor concentration because of the reduced adsorption volume of charcoal tube due to humidity. 2. Breakthrough by competitive adsorption of vapors onto charcoal tube was observed at first from n-hexane having the lowest boiling point and highest vapor pressure among the three organic vapors investigated, followed by TCE. No breakthrough was observed from toluene under all experimental conditions. 3. For n-hexane, breakthrough was observed after 2 hours of sampling and breakthrough rates were increased as relative humidity increased. For TCE, breakthrough was found after 3 hours of sampling and breakthrough rates by sampling time were increased as vapor concentration increased. 4. The adsorbed amount of mixed organic vapor at breakthrough was shown to have statistically significant correlations with sampling time, relative humidity, and vapor concentration in descending order of correlation. Relative humidity and sampling time for n-hexane and sampling time and concentration for TCE were both statistically significantly correlated. 5. Relative humidity was found to affect the amount of breakthrough of mixed organic vapor and n-hexane. Among three percentages of relative humidity investigated, the amount of breakthrough at 85 % relative humidity was significantly larger than those of at lower percentages of relative humidity. No statistically significant difference was found between 25 % and 55 % relative humidity. 6. The results of multiple regression analysis between breakthrough and relative humidity, vapor concentrations showed that the coefficient of determination of mixed organic vapor was 0.263 and those of n-hexane and TCE were 0.275 and 0.189, respectively. 7. Flow rates of sampling pumps used were found to be affected by relative humidity present. At 25 %, 55 %, and 85 % relative humidity, the relative errors of sampling pump were 1.4 %, 13.4 %, and 18.6 %, respectively. In conclusion, the results of this study showed that high relative humidity could reduce the adsorption volume of charcoal tubes and subsequently increase breakthrough rates. Therefore, to prevent breakthrough when sampling mixed organic vapors, it is suggested that either sampling volume be reduced on the flow rate be lowered so as to minimize breakthrough of the most volatile organic vapor in the mixture. In addition, since the flow rates of a sampling pump can be adversely affected by high relative humidity, it is recommended to use a constant flow mode pump when sampling in the highly humid environment.

  • PDF

Effect of morphology and diameter of implant fixture-abutment connection on mechanical failure of implants (임플랜트 고정체-지대주 연결부의 형태와 직경이 임플랜트의 기계적 실패에 미치는 영향)

  • Yun, Bo-Hyeok;Shin, Hyon-Mo;Yun, Mi-Jung;Huh, Jung-Bo;Jeong, Chang-Mo;Kang, Eun-Sook
    • The Journal of the Korean dental association
    • /
    • v.53 no.9
    • /
    • pp.644-655
    • /
    • 2015
  • Purpose: This study was conducted to evaluate the effect of the fixture abutment connection type and diameter on the screw joint stability in external butt joint for 2nd surgery and internal cone connected type implant system for 1st and 2nd surgery using ultimate fracture strength. Materials and Methods: USII system, SSII system and GSII system of Osstem Implant were used. Each system used the fixture with two different diameters and cement-retained abutments, and tungsten carbide / carbon coated abutment screws were used. Disc shaped stainless steel metal tube was attached using resin-based temporary cement. The experimental group was divided into seven subgroups, including the platform switching shaped specimen that uses a regular abutment in the fixture with a wide diameter in USII system. A static load was increased to the metal tube at 5mm deviated point from the implant central axis until it reached the compression bending strength at a rate of 1mm/min. Then the deformations and patterns of fracture in threaded connection were compared. Results and Conclusion: 1. In the comparison between the Regular diameter, compression bending strength of SSII system was higher than USII system and GSII system. There was no significant difference between USII system and GSII system. 2. In the comparison between wide diameter, compression bending strength was increased in the order of GSII system, USII system, and SSII system. 3. In comparison between the implant diameter, compression bending strength of the wide diameter was greater than the regular diameter in any system(P<0.05). 4. There was no significant difference between the platform switching (III group) and the regular diameter (I group) in USII system. 5. In USII system, fracture of abutment screw and deformation of both fixture and abutment were observed in I, II and III subgroups. 6. Failure pattern of SSII system, which was the fracture of abutment screw and deformation of the abutment and fixture, was observed in both IV and V subgroups. Fracture of some fixtures was observed in subgroup V. 7. Failure pattern of GSII system, which was the fracture of the abutment screw and deformation of the fixture and the abutment, was observed in both VI and VII subgroups. Apart from other subgroups, subgroup VII demonstrated no bending neither the fracture at the top of the fixture. The compressive deformation of internal slope in the fixture was the only thing observed in subgroup VII.

Effect of Vapor-Cooled Heat Stations in a Cryogenic Vessel (극저온액체 저장용기에서 열전도 차폐단의 영향)

  • Kim, S.Y.;Kang, B.H.;Choi, H.J.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.4
    • /
    • pp.169-176
    • /
    • 1998
  • An experimental study on effect of vapor-cooled heat stations in a 5.5 liter cryogenic vessel has been performed. The cryogenic vessel is made of stainless steel of thickness of 1mm and insulated by the combined insulation of vacuum, MLI(multi-layer insulation) and vapor-cooled radiation shield. Vapor-cooled heat stations are also constructed based on the 1-dimensional thermal analysis to reduce the heat inleak through a filling tube. Thermal analysis indicates that the vapor-cooled heat stations can substantially enhance the performance of vessel for cryogenic fluids with high $C_p/h_{fg}$ where $C_p$ the specific heat and $h_{fg}$ the heat of vaporization, such as $LH_2$ and LHe. The experimental results for $LN_2$ shows that the total heat inleak into inner vessel consists of 14% radiation and 86% conduction through the filling tube. Therefore, it is expected that the conduction heat in leak of the vessel for high $C_p/h_{fg}$ cryogenic fluids can be significantly reduced. powders. The amount of copper coating was 20wt%. In order to examine corrosion behavior of the electrodes, the corrosion current and the current density, in 6M KOH aqueous solution after removal of oxygen in the solution, were measured by potentiodynamic and cyclic voltamo methods. The results showed that Co in the alloy increased corrosion resistance of the electrode whereas Ni decreased the stability of the electrode during the charge-discharge cycles. The electrode used Si sealant as a binder showed a lower corrosion current density than the electrode used PTFE and the electrode used Cu-coated alloy powders showed the best corrosion resistance.

  • PDF

Study on High Degree of Efficiency Chemical Reactor for Air Purification Using the Glow Discharge (글로우 방전을 이용한 고효율 공기 정화용 화학 반응기의 특성관찰에 관한 연구)

  • Kim, Gi-Ho;Bu, Min-Ho;Lee, Sang-Cheon
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.1
    • /
    • pp.14-22
    • /
    • 2006
  • the basic model of chemical reactor using glow discharge, we used cathode discharge cell with vacant cavity in the middle. Currently glow discharge is widely studied as a radiation source or atomization device in atomic spectroscopy and remarkable technological achievements are made through the graft with other analysis devices such as microanalysis and steel analysis.1 Additionally, as the characteristics of basic glow discharge and radiation have been reviewed many times, those results could be used in this experiment.2-3 In 1993, an article regarding the treatment of poisonous gas in the air using low temperature plasma was published. According to this article, if DC Glow Discharge is used under continuous atmospheric flow, poisonous gases such as SO2 and NO can be removed.4 Based on those findings, we designed highly efficient reactor where stable air plasma is composed and all air flow pass the negative glow area passing through the tube. It was observed that the cathode tube type glow discharge developed in this study would be economical, easy to use and could be used as radiation source as well.