• Title/Summary/Keyword: Steel material

Search Result 5,016, Processing Time 0.025 seconds

Determination of displacement distributions in welded steel tension elements using digital image techniques

  • Sozen, Sahin
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1103-1117
    • /
    • 2015
  • It is known that material properties, connection quality and manufacturing methods are among the important factors directly affecting the behavior of steel connections and hence steel structures. The possible performance differences between a fabricated connection and its computer model may cause critical design problems for steel structures. Achieving a reliable design depends, however, on how accurately the material properties and relevant constitutive models are considered to characterize the behavior of structures. Conventionally, the stress and strain fields in structural steel connections are calculated using the finite elements method with assumed material properties and constitutive models. Because the conventional strain gages allow the measurement of deformation only at one point and direction for specific time duration, it is not possible to determine the general characteristics of stress-strain distributions in connections after the laboratory performance tests. In this study, a new method is introduced to measure displacement distribution of simple steel welded connections under tension tests. The method is based on analyzing digital images of connection specimens taken periodically during the laboratory tension test. By using this method, displacement distribution of steel connections can be calculated with an acceptable precision for the tested connections. Calculated displacements based on the digital image correlation method are compared with those calculated using the finite elements method.

Multi-material topology optimization of Reissner-Mindlin plates using MITC4

  • Banh, Thien Thanh;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.27-33
    • /
    • 2018
  • In this study, a mixed-interpolated tensorial component 4 nodes method (MITC4) is treated as a numerical analysis model for topology optimization using multiple materials assigned within Reissner-Mindlin plates. Multi-material optimal topology and shape are produced as alternative plate retrofit designs to provide reasonable material assignments based on stress distributions. Element density distribution contours of mixing multiple material densities are linked to Solid Isotropic Material with Penalization (SIMP) as a design model. Mathematical formulation of multi-material topology optimization problem solving minimum compliance is an alternating active-phase algorithm with the Gauss-Seidel version as an optimization model of optimality criteria. Numerical examples illustrate the reliability and accuracy of the present design method for multi-material topology optimization with Reissner-Mindlin plates using MITC4 elements and steel materials.

Characterization of Metal-FRP Laminated Composites for Strengthening of Structures: Part-I Tensile Behavior (사회기반시설물의 내진 보강을 위한 연성재-FRP적층복합체의 역학적 거동 특성 분석: Part-I 인장 거동)

  • Park, Cheol-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.6
    • /
    • pp.54-63
    • /
    • 2011
  • Steel plate or FRP materials have been typically used for the seismic retrofit of civil infrastructures. In order to overcome the limitation of each retrofitting material, a composite material, which takes advantages from both metal and fiber polymer materials, has been developed. In the study herein, the composite retrofitting material consists of metal part(steel or aluminum) and FRP sheet part(glass or carbon fiber). The metal part can enhance the ductility and the FRP part the ultimate strength. As a preliminary study to investigate the fundamental mechanical characteristics of the metal-FRP laminated composite material this study performed the tensile test with various experimental variables including the number, the angle and the combination of FRP laminates. From the test results, both aluminum and steel-FRP laminate composite material showed increased fracture toughness. However, the angle and the kind of fibers should be carefully considered in conjunction with the expected loading conditions. In general, steel-FRP laminate composite showed better tensile performance in regards to the seismic retrofit purposes.

A Review on the Tangent Modulus of Elasticity Associated With Partially Yielded Section of Steel Member Under Axially Compressed (강 압축부재의 단면 항복에 따른 접선탄성계수 고찰)

  • See, Sang Kwang
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.1
    • /
    • pp.127-134
    • /
    • 2018
  • This study suggests the tangent modulus $E_t$ associated with partially yielded section of steel member under axially compressed. The provisions for column strength does not provide a information about failure mode of structural system. So, designers can not evaluate that a failure comes from member buckling or material yielding. The material of the axially compressed column under inelastic behavior reaches yielding point before the axial force renders the column bent. If axial members yields not by buckling effect but gradually yielding effect of material, the design code should accept related tangent modulus Et which is based on gradual yielding effect of material. This study provides the new effective tangent modulus $E_t$ derived in the case that residual stress is 30 percent and 50 percent of yielding stress respectively. The study considers idealized I section of steel which ignores web and general I section of steel with web respectively and makes conclude that tangent modulus $E_t$ with idealized I section of steel is rational.

A study on the abrasion resistance of punching carbide material of die for the application of SCP-1 material (SCP-1재료 적용을 위한 초경재료 펀치의 내마모성에 대한 연구)

  • Kim, Seung-Soo;Lee, Min;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.44-48
    • /
    • 2019
  • Motor core products are used as materials for electrical steel sheets and cold-rolled steel sheets according to the performance of motors. The cemented carbide material of the mold punch applied to the motor core material causes many troubles due to abrasion and burr problem. The selection of these materials has a great effect on the production life, mass production, product quality as well as mold life. The cemented carbide applied to the products of the motor core is recognized as a very important part. In this study, cold rolled steel sheet was applied to motor core SCP-1 steel 1.0mm, and The effects of abrasion and punching oil on the shear process were investigated for the selection of cemented carbide. Experiments were conducted to select and apply cemented carbide only for the motor core punch optimized for cold rolled steel. The results showed that the cemented carbide material of $CDK3^{***}$ produced the least wear and burrs.

Revision on Material Strength of Steel Fiber-Reinforced Concrete

  • Karl, Kyoung-Wan;Lee, Deuck-Hang;Hwang, Jin-Ha;Kim, Kang-Su;Choi, Il-Sup
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.2
    • /
    • pp.87-96
    • /
    • 2011
  • Many studies have been performed on steel fiber-reinforced normal/high-strength concrete (SFRC, SFRHC) for years, which is to improve some of the weak material properties of concrete. Most of equations for material strengths of SFRHC, however, were proposed based on relatively limited test results. In this research, therefore, the material test results of SFR(H)C were extensively collected from literature, and material tests have conducted on SFR(H)C; compressive strength tests, splitting tensile tests, and modulus of rupture tests. Based on the extensive test data obtained from previous studies and this research, a database of SFR(H)C material strengths has been established, and improved equations for material strengths of SFR(H)C were also proposed. Test results showed that both the splitting tensile strength and the modulus of rupture of SFR(H)C increased as the volume fraction of steel fiber increased, while the effect of the steel fiber volume fraction on the compressive strength of SFR(H)C were not clearly observed. The proposed equations for the splitting tensile strength and the modulus of rupture of SFR(H)C showed better results than the previous equations examined in this study in terms of not only accuracy but also safety/reliability.

Technical Development using High Strength Steel of mP Type on Automobile Parts (TRIP형 고장력강판의 부품적용 기술개발)

  • 류성지;이상제;이규현;이문용
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.46-53
    • /
    • 2002
  • The expolitation of substitute material and new manufacturing technology of the automobile body panel for next generation cars have been steadily professed by advanced automobile companies. High strength steel of TRIP (Transformation of Induced Plasticity) type is developed in response to demands about crash safety and high strength of automobile. In this study, basic technologies can fix up problems occurring on the mass production and applied to the other forming methods will be prepared through rasping a property of TRIP material.

The Capacity of Applying Electrical Resistance Probe in Natural Corrosion Tests of Vietnam

  • Pham, Thy San;Le, Thi Hong Lien;Le, Quoc Hung
    • Corrosion Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.98-101
    • /
    • 2003
  • The Electrical Resistance Probe of carbon steel and weight loss coupons were exposed in atmosphere and in the lake water of Hanoi. The comparison of data received by two methods after one year exposure was presented. The correspondence of the data of these methods on the exposure time in both environments showed a capacity of using Electrical Resistance Probe in Vietnamese natural corrosion testing of Carbon steel.

A Study on Steel Properties for Floating Photovoltaic System Structure (수상태양광 구조물의 강재특성에 관한 연구)

  • Choi, Young-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5400-5405
    • /
    • 2014
  • For the development of a floating photovoltaic system, materials with light weight and high tensile strength must be applied to reduce the burden on buoyancy, and material characteristics with high resistance to corrosion in water environment is required. Accordingly, a new high strength steel material with improved strength, durability, manufacturability, and weldability that are appropriate for floating photovoltaic system structures is needed. This paper reports the results of a mechanical load test and steel corrosion test on general steel (SS400) and high strength steel (POSH 690) for the selection of an appropriate steel material for a floating photovoltaic system. The results of a test on new high strength steel revealed excellent mechanical performance compared to general steel. The new steel material was manufactured for use in an actual site, and the weight was reduced by approximately 30~40% compared to existing general steel.

Nugget Formation and Dynamic Resistance in Resistance Spot Welding of Aluminum to Steel

  • Chang H. S.
    • International Journal of Korean Welding Society
    • /
    • v.5 no.1
    • /
    • pp.53-59
    • /
    • 2005
  • Auto industry has employed resistance spot welding(RSW) to join steel sheets for structural rigidity of automobile body. Driven by the need to reduce weight and fuel consumption, car companies have been evaluating aluminum intensive vehicles(AIVs) as a way to reduce vehicle weight without downsizing. During the transition from all steel-construction vehicle body to aluminum intensive body, joining aluminum to steel sheets emerges as a serious contender in automobile body. This paper deals with application of transition material to RSW aluminum to steel. Placing transition material insert between the aluminum/steel interface was found very effective to overcome physical incompatibility between aluminum and steel. Use of transition insert allows for two separate weld nuggets to be formed in their respective aluminum/aluminum and steel/steel interfaces. This RSW processes was monitored with the aid of dynamic resistance sampling. Typical patterns in sampled dynamic resistance curves indicated formation of sound nugget. The growth of two separate nuggets was examined by micro-cross section test.

  • PDF