• Title/Summary/Keyword: Steel Truss

검색결과 400건 처리시간 0.022초

목재를 이용한 육각형 공간 트러스 모델의 정적좌굴하중 특성 (Characteristics of Static Buckling Load of the Hexagonal Spatial Truss Models using Timber)

  • 하현주;손수덕;이승재
    • 한국공간구조학회논문집
    • /
    • 제22권3호
    • /
    • pp.25-32
    • /
    • 2022
  • In this paper, the instability of the domed spatial truss structure using wood and the characteristics of the buckling critical load were studied. Hexagonal space truss was adopted as the model to be analyzed, and two boundary conditions were considered. In the first case, the deformation of the inclined member is only considered, and in the second case, the deformation of the horizontal member is also considered. The materials of the model adopted in this paper are steel and timbers, and the considered timbers are spruce, pine, and larch. Here, the inelastic properties of the material are not considered. The instability of the target structure was observed through non-linear incremental analysis, and the buckling critical load was calculated through the singularities and eigenvalues of the tangential stiffness matrix at each incremental step. From the analysis results, in the example of the boundary condition considering only the inclined member, the critical buckling load was lower when using timber than when using steel, and the critical buckling load was determined according to the modulus of elasticity of timber. In the case of boundary conditions considering the effect of the horizontal member, using a mixture of steel and timber case had a lower buckling critical load than the steel case. But, the result showed that it was more effective in structural stability than only timber was used.

Seismic behavior of composite walls with encased steel truss

  • Wu, Yun-tian;Kang, Dao-yang;Su, Yi-ting;Yang, Yeong-bin
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.449-472
    • /
    • 2016
  • This paper studies the seismic behavior of reinforced concrete (RC) walls with encased cold-formed and thin-walled (CFTW) steel truss, which can be used as an alternative to the conventional RC walls or steel reinforced concrete (SRC) composite walls for high-rise buildings in high seismic regions. Seven one-fourth scaled RC wall specimens with encased CFTW steel truss were designed, manufactured and tested to failure under reversed cyclic lateral load and constant axial load. The test parameters were the axial load ratio, configuration and volumetric steel ratio of encased web brace. The behaviors of the test specimens, including damage formation, failure mode, hysteretic curves, stiffness degradation, ductility and energy dissipation, were examined. Test results indicate that the encased web braces can effectively improve the ductility and energy dissipation capacity of RC walls. The steel angles are more suitable to be used as the web brace than the latticed batten plates in enhancing the ductility and energy dissipation. Higher axial load ratio is beneficial to lateral load capacity, but can result in reduced ductility and energy dissipation capacity. A volumetric ratio about 0.25% of encased web brace is believed cost-effective in ensuring satisfactory seismic performance of RC walls. The axial load ratio should not exceed the maximum level, about 0.20 for the nominal value or about 0.50 for the design value. Numerical analyses were performed to predict the backbone curves of the specimens and calculation formula from the Chinese Code for Design of Composite Structures was used to predict the maximum lateral load capacity. The comparison shows good agreement between the test and predicted results.

Shear strength prediction of concrete-encased steel beams based on compatible truss-arch model

  • Xue, Yicong;Shang, Chongxin;Yang, Yong;Yu, Yunlong;Wang, Zhanjie
    • Steel and Composite Structures
    • /
    • 제43권6호
    • /
    • pp.785-796
    • /
    • 2022
  • Concrete-encased steel (CES) beam, in which structural steel is encased in a reinforced concrete (RC) section, is widely applied in high-rise buildings as transfer beams due to its high load-carrying capacity, great stiffness, and good durability. However, these CES beams are prone to shear failure because of the low shear span-to-depth ratio and the heavy load. Due to the high load-carrying capacity and the brittle failure process of the shear failure, the accurate strength prediction of CES beams significantly influences the assessment of structural safety. In current design codes, design formulas for predicting the shear strength of CES beams are based on the so-called "superposition method". This method indicates that the shear strength of CES beams can be obtained by superposing the shear strengths of the RC part and the steel shape. Nevertheless, in some cases, this method yields errors on the unsafe side because the shear strengths of these two parts cannot be achieved simultaneously. This paper clarifies the conditions at which the superposition method does not hold true, and the shear strength of CES beams is investigated using a compatible truss-arch model. Considering the deformation compatibility between the steel shape and the RC part, the method to obtain the shear strength of CES beams is proposed. Finally, the proposed model is compared with other calculation methods from codes AISC 360 (USA, North America), Eurocode 4 (Europe), YB 9082 (China, Asia), JGJ 138 (China, Asia), and AS/NZS 2327 (Australia/New Zealand, Oceania) using the available test data consisting of 45 CES beams. The results indicate that the proposed model can predict the shear strength of CES beams with sufficient accuracy and safety. Without considering the deformation compatibility, the calculation methods from the codes AISC 360, Eurocode 4, YB 9082, JGJ 138, and AS/NZS 2327 lead to excessively conservative or unsafe predictions.

앙골라 주경기장 구조설계 (Structural Design of Angola Stadium)

  • 김종수;신창훈;김정현
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2008년도 춘계 학술발표회 논문집
    • /
    • pp.212-217
    • /
    • 2008
  • 본 논문은 앙골라 주경기장에 대한 구조설계에 대해 설명하고 있다. 앙골라 주경기장은 연면적 78,000$m^2$, 지상 4층 구조물로서 스탠드 부분은 Steel moment frame으로 구성되고, 지붕부분은 캔틸래버 트러스 시스템으로 설계되었다. 기초는 파일기초가 사용되었으며, 내진과 내풍설계, 스탠드 부분에 대한 다이아프램 액션, 스탠드와 지붕사이의 Interaction, 바닥진동 등 사용성 평가가 설계사항에 고려된 프로젝트이다.

  • PDF

초기결함을 갖는 강교량의 피로시험 및 수명 평가 (Fatigue Test and Service Life Assessment of Steel Truss Bridges with Initial Imperfections)

  • 방명석
    • 한국안전학회지
    • /
    • 제15권4호
    • /
    • pp.119-122
    • /
    • 2000
  • The truss bridge is composed of numerous steel beams. In long span bridges the size of beams is getting larger, so the number of plate girders is increasing instead of rolled beams. This plate girder has long welding lines at the intersection of steel plates. The improper welding at the intersection line causes the steel bridge to be structurally unsafe. In this paper the loss of member section from improper welding was measured and the experimental testing was performed to get the S-N curve from testing models with sectional losses. The improper welding resulted in the lowering of structural safety and the shortening of life cycle.

  • PDF

일체형 알루미늄 트러스의 경제성분석에 관한 연구 (A study on the economic analysis of the integrated aluminum truss)

  • 이영래;홍성욱;김신;문제철;신찬호
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 2부
    • /
    • pp.127-130
    • /
    • 2011
  • This study is concerned with the integrated aluminum trusses on the economic analysis of the study, and aluminum truss beam zinc red lead of the economy when compared beam total amount of red lead zinc beam 54,000 won 52,000 won 58,000 won Aluminum beam Red lead to over beam 2,000 won, 6,000 won lower than that for zinc are believed to be beam. This material is aluminum and the other beam expensive than the material costs of aluminum and an easy construction method beam attribute part of the low cost of labor and overall cost compared to the red lead beam zinc were identified as having competitive prices.

  • PDF

Direct design of truss bridges using advanced analysis

  • Kim, S.E.
    • Structural Engineering and Mechanics
    • /
    • 제6권8호
    • /
    • pp.871-882
    • /
    • 1998
  • This paper presents a new design method of truss bridges using advanced analysis. In this approach, separate member capacity checks encompassed by the specification equations are not required because the stability of separate members and the structure as a whole can be treated rigorously for the determination of the maximum strength of the structures. The method is developed and refined by modifications to the conventional elastic-plastic hinge method. Verification studies are carried out by comparing with the plastic-zone solutions. The load-deflection behavior of the truss shows a good agreement between the plastic-zone analysis. A case study is provided for a truss bridge. Member sizes determined by the proposed method are compared with those determined by the conventional method. It is concluded that the proposed method is suitable for adoption in practice.

건식 알루미늄 트러스 설치공법의 단열재 시공용 앵글개발 (Development of the angle assembly for insulator construction of the dry aluminum truss construction methodsystem)

  • 이영래;홍성욱;안태한;도선붕
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.252-253
    • /
    • 2013
  • In this paper, we introduce the insulation of aluminum truss dry installation method for construction for the development of the Angle. Features of the development of anchor bolts have been identified as no risk of fire, and ease of construction, which has the advantage of being the adiabatic efficiency is increased. In future research, to study the angle of the field on the Application of the development for the construction.

  • PDF

Optimum location for the belt truss system for minimum roof displacement of steel buildings subjected to critical excitation

  • Kamgar, Reza;Rahgozar, Peyman
    • Steel and Composite Structures
    • /
    • 제37권4호
    • /
    • pp.463-479
    • /
    • 2020
  • Currently, there are many lateral resisting systems utilized in resisting lateral loads being produced in an earthquake. Such systems can significantly reduce the roof's displacement when placed at an optimum location. Since in the design of tall buildings, the minimum distance between adjacent buildings is important. In this paper, the critical excitation method is used to determine the best location of the belt truss system while calculating the minimum required distance between two adjacent buildings. For this purpose, the belt truss system is placed at a specific story. Then the critical earthquakes are computed so that the considered constraints are satisfied, and the value of roof displacement is maximized. This procedure is repeated for all stories; i.e., for each, a critical acceleration is computed. From this set of computed roof displacement values, the story with the least displacement is selected as the best location for the belt truss system. Numerical studies demonstrate that absolute roof displacements induced through critical accelerations range between 5.36 to 1.95 times of the San Fernando earthquake for the first example and 7.67 to 1.22 times of the San Fernando earthquake for the second example. This method can also be used to determine the minimum required distance between two adjacent buildings to eliminate the pounding effects. For this purpose, this value is computed based on different standard codes and compared with the results of the critical excitation method to show the ability of the proposed method.

역 최적화 방법을 이용한 트러스 구조물의 손상탐지 (Damage Detection in Truss Structures using Anti-Optimization)

  • 이승혜;이재홍
    • 한국강구조학회 논문집
    • /
    • 제25권4호
    • /
    • pp.441-449
    • /
    • 2013
  • 손상을 입은 구조물은 고유 특성 값이 변한다. 본 연구는 건전상태의 고유 특성 값과 손상상태의 특성 값 차이를 사용하여 손상 탐지 하는 것을 목적으로 한다. 두 대비되는 모델간의 특성 차이를 극대화 시키는 조건을 찾는 역 최적화 기법이 사용되었다. 본 논문은 손상탐지 알고리즘 구축의 전 단계로 건전상태와 손상상태의 트러스 구조물 변형에너지의 차이를 극대화 할 수 있는 하중조건을 찾는 알고리즘을 개발하였다. 트러스 구조물에 대한 예제는 제안 기법의 정확성과 효과를 입증한다.