앙골라 주경기장 구조설계

Structural Design of Angola Stadium

김종수*

신 창 훈**

김 정 현***

Kim, Jong-soo

Shin, Chang-hoon

Kim, Jeong-hyeon

요 약

본 논문은 앙골라 주경기장에 대한 구조설계에 대해 설명하고 있다. 앙골라 주경기장은 연면적 78,000㎡, 지상 4층 구조물로서 스탠드 부분은 Steel moment frame으로 구성되고, 지붕부분은 캔틸래버 트러스 시스템으로 설계되었다. 기초는 파일기초가 사용되 었으며, 내진과 내풍설계, 스텐드 부분에 대한 다이아프램 액션, 스탠드와 지붕사이의 Interaction, 바닥진동 등 사용성 평가가 설계사 항에 고려된 프로젝트이다.

Abstract

This paper is concerned with the structural design of Angola Stadium. The Angola stadium is composed of a Steel moment frame system and a Cantilever steel truss roof. Whole structural analysis is necessary to ensure the stability. Considered FEM analysis, Design of Wind load & Seismic, Stand diaphragm, interaction between stand and Roof, Serviceability.

키워드: 앙골라 주경기장, 철골구조, 캔틸레버 지붕, 대공간 구조

Keywords: Angola stadium, Steel moment frame, Cantilever roof truss, Spatial structure

1. Design Concept

For SAFETY

external force

- Design structural members to resist

- Verification through 3-D FEM analysis

For PLANNING

- Structural framing plan for architectural space
- Alternate study of structural system

STRUCTURAL

DESIGN

OPTIMIZATION

For ECONOMICS

- Alternate study of economics
- Determination of foundation type according to soil condition

For ENVIRONMENT

- Adoption of new technology and materials
- Minimization of scrapped material

For MATAINTENANCE - Minimization of vibration and deflection

- Prevention of crack and deformation
- Minimization of vertical and horizontal displacement

For CONSTRUCTION

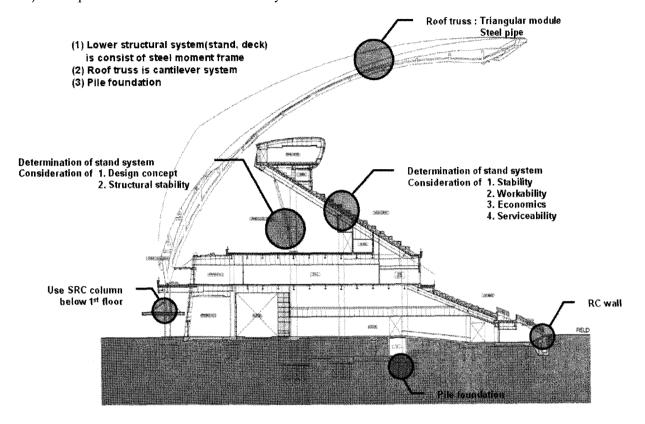
- Member design for workability
- Simplification of details

정회원, (주)C.S구조엔지니어링 대표이사, P.E.

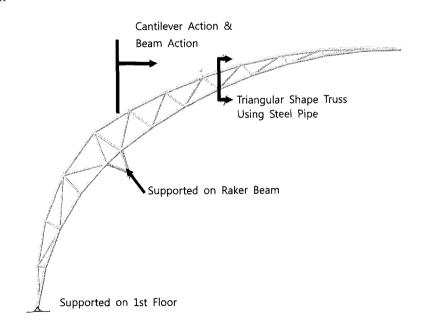
** 정회원, (주)CS구조엔지니어링 소장

*** (주)영구조엔지니어링

E-mail: jskim@csse.kr


E-mail: hoony@csse.kr

E-mail: jhyuni@ysse.kr


Tel: 02-3497-7801 Fax:02-3497-7899

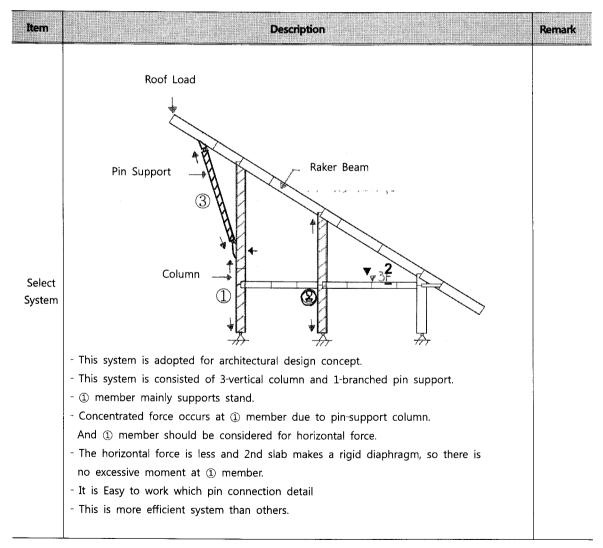
2. Study of Structural System

1) Concept Sketch of Overall Structural System

2) Roof System

2. Structural System for Stadium

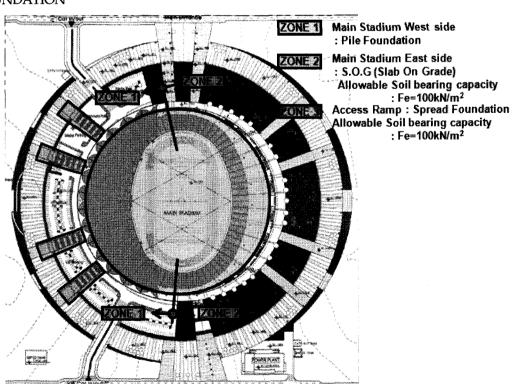
- Comparison between PC, RC and Steel system

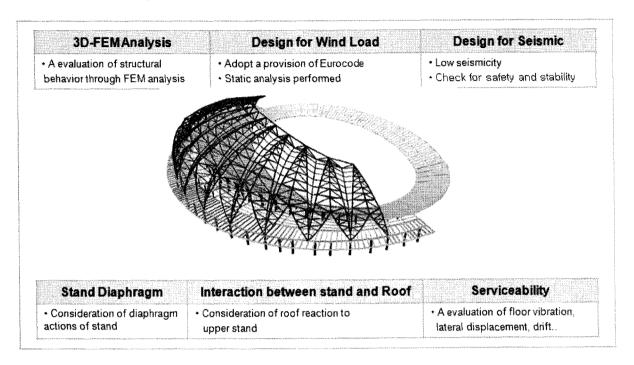

Alteration	PC Structure	RC Structure	Steel Structure
Structure Method	 Dry construction, Heavy-weight Constructability uniformity Temporary Structure NOT needs 	Wet construction, Heavy-weight Constructibility ununiformity Temporary structure necessity Disadvantage of high-place work	Dry construction, Light-weight Constructibility uniformity Temporary structure unnecessity Advantage of high-place work
Structure	Long-span Prestressing Advantage of vibrations	· Disadvantage of long-span · Advantage of vibrations	· Advantage of long-span · Disadvantage of vibrations
Environment Friendly	No construction waste	Construction waste	No construction waste
Maintenance	Minimize maintenance Good durability	· Maintenance costs · Normal durability	Steel member maintenance costs Normal durability
Height plan	Free of main air duct	· Interference main air duct · Height problem	Interference main air duct Height problem
Direct Construction Cost	102%	100%	117%
Construction Duration	85%	100%	80%
Method of Construction	Steel Raker Beam Using Deck Slab as Stand System		

SELECTION STRUCTURAL SYSTEM for ANGOLA STADIUM

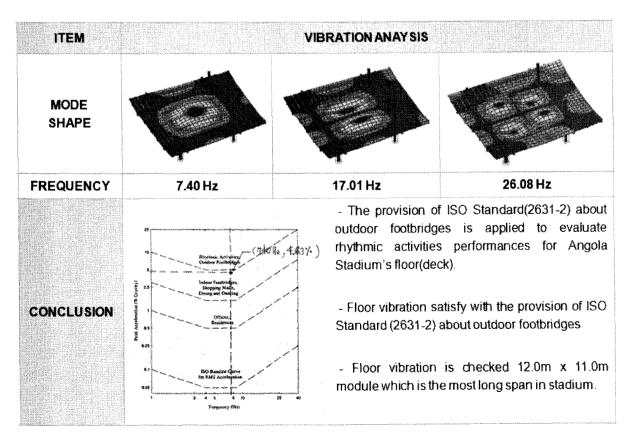
- 1) Consideration for environment of a construction field
 - A Transportation method for structural members
 - A material supply and demand program
 - Employee fee and a cost of materials
 - Construction conditions
- 2) Disadvantage of PC and RC system due to pre-study
- 2-1) PC system
 - Difficult to carry structural members
 - It need to establish PC production factory in situ
 - it spends much time (about 2~3year)
- 2-2) RC system
 - Need much time to curing
 - Difficult to make forms for Raker Beam and Stand

- Much construction period (not satisfying given construction period)
- 3) Important factor for Angola Stadium construction
 - Time: Construction period (about 2.6 years)
 - Transportation : Structural members
 - Construction: Need to easy work
- → Selected System
- Easy to work
- Need to verify for a material supply and demand program
- Useful for short construction period


- UPPER STAND SUPPORT SYSTEM


- CONSTITUTION of STAND

ITEM	DESCRIPTION		
ALT1		one speedly number models. Comed. Codd throad stack, and plate.)	
ALT2		 This system require additional plates or materials → Need to fixing method It is difficult to make stand diaphragm → Steel braces are needed 	
ALT3		 It is difficult to pour a concrete in whole area at once. Increase self-weight → alt2(67%) < alt1(100%) < alt3(126%) Easy to work. It is possible to make stand diaphragm. Thus steel brace can be reduced 	
SELECTION	 **Alt 3 is selected Easy to work (construction, erection, fabrication) It is useful to make stand diaphragm for structural engineering, if stand has not diaphragm then brace is needed 		


- FOUNDATION

3. Structural analysis concept

4. FLOOR VIBRATION

