• Title/Summary/Keyword: Steel Pipe Ring

Search Result 15, Processing Time 0.018 seconds

Ultimate Behavior of GFRP Shell Structure Stiffened by Steel Pipe Ring (강관링으로 보강된 GFRP 쉘구조의 극한 거동)

  • Kim, In Gyu;Lim, Seung Hyun;Kim, Sung Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.219-229
    • /
    • 2014
  • The experiment and FE analysis of ultimate behavior of GFRP cylindrical shell structure stiffened by steel pipe ring instead of rectangular cross-section ring was presented. Four kinds of test models were designed and flexural failure experiment was performed to investigate ultimate behavior characteristic according to the size of cross section of steel pipe ring and diameter of GFRP shell. Material properties of specimens were experimented by bending, tensile and compressive test. Displacements and strains were measured to evaluate failure behavior of steel pipe ring and GFRP shell structure. The experimental results were compared with the FEA results by commercial program ABAQUS. It is observed that GFRP shell structure stiffened by steel ring have enough ductility to bending failure, and an increase of bending rigidity of steel ring is very effective to increase of failure strength of GFRP shell structure.

An Investigation of Structural Behavior of Underground Buried GFRP Pipe in Cooling Water Intake for the Nuclear Power Plant (원전 냉각수 취수용 지중매설 GFRP관의 구조적 거동 조사)

  • Lee, Hyoung-Kyu;Park, Joon-Seok
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.91-96
    • /
    • 2015
  • GRP pipe (Glass-fiber Reinforced Plastic Pipe) lines making use of FRP (Fiber Reinforced Plastic) are generally thinner, lighter, and stronger than the existing concrete or steel pipe lines, and it is excellent in stiffness/strength per unit weight. In this study, we present the result of field test for buried GRP pipes with large diameter(2,400mm). The vertical and horizontal ring deflections are measured for 387 days. The short-term deflection measured by the field test is compared with the result predicted by the Iowa formula. In addition, the long-term ring deflection is predicted by using the procedure suggested in ASTM D 5365(ANNEX) in the range of 40 to 60 years of service life of the pipe based on the experimental results. From the study, it was found that the long-term vertical and horizontal ring deflection up to 60 years is less than the 5% ring deflection limitation.

Evaluation of HIC/SSCC Resistance for API-X70 Pipe Manufactured by JCO Bending Process and SA Welding (JCO 밴딩과 SA용접으로 제조된 API-X70급 강관의 HIC/SSCC 저항성 평가)

  • Ryoo, Hoi-Soo;Kim, Hee Jin;Lee, Dong-Eon
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.1-6
    • /
    • 2014
  • This study aims at manufacturing SA welded API-X70 line-pipe with sour gas resistance. A pipe was manufactured by JCO bending process and SA welding using the API-X70 plate guaranteed HIC resistance. SA welded pipe was expanded in order to reduce the residual stress. The evaluation of a pipe for resistance to HIC and SSCC were performed by the RS D 0004 and RS D 0005 standards. For verification that a pipe has acceptable resistance to HIC, fullscale test was carried out. Results showed no cracking for the HIC and SSCC.

Flexural Behavior of Composite Ring Stiffened by GFRP and Steel Pipe (GFRP와 강관으로 구성된 합성형 보강링의 휨거동)

  • Yoon, A Reum;Kim, Su Eun;Kim, Sung Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.61-71
    • /
    • 2017
  • The flexural behavior of composite ring stiffened by GFRP and steel pipe is presented in this paper. The effective width is required to construct FEM beam element model to verify the composite flexural behavior of stiffened ring of cylindrical shell structure. The experimental results are compared with the theoretical and FEM results by commercial program ABAQUS to verify the effective width coefficient. The yield, crack and ultimate loads is calculated using theoretical strains that varies depending on yield state and compared with experiment result and FEM results by ABAQUS solid model.

Prediction of Short-term Behavior of Buried Polyethylene Pipe (지중매설 폴리에틸렌 관의 단기거동 예측)

  • Park, Joonseok;Lee, Young-Geun;Kim, Sunhee;Park, Jung-Hwan;Kim, Eung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.907-914
    • /
    • 2012
  • Flexible pipes take advantage of their ability to move, or deflect, under loads without structural damage. Common types of flexible pipes are manufactured from polyethylene (PE), polyvinyl chloride (PVC), steel, glass fiber reinforced thermosetting polymer plastic (GFRP), and aluminum. In this paper, we present the result of an investigation pertaining to the short-term behavior of buried polyethylene pipe. The mechanical properties of the polyethylene pipe produced in the domestic manufacturer are determined and the results are reported in this paper. In addition, vertical ring deflection is measured by the laboratory model test and the finite element analysis (FEA) is also conducted to simulate the short-term behavior of polyethylene pipe buried underground. Based on results from soil-pipe interaction finite element analyses of polyethylene pipe is used to predict the vertical ring deflection and maximum bending strain of polyethylene pipe.

Integrated Expansion Analysis of Pipe-In-Pipe Systems

  • Choi, Han-Suk;Do Chang-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.9-14
    • /
    • 2006
  • This paper presents an analytical method, application of expansion, mechanical design, and integrated expansion design of subsea insulated pipe-in-pipe (PIP) systems. PIP system consists of a flowline and a casing pipe for the transport of high temperature and high pressure product from the subsea wells. To prevent heat lass from the fiowline, insulation material is applied between the pipes. The fiawline pipe and the casing pipe have mechanical connections through steel ring plate (water stops) and bulkheads. Pipeline expansion is defined by temperature, internal pressure, soil resistance, and interaction force between the flowline and the casing pipe. The results of the expansion analysis, the mechanical design of connection system of the two pipes and tie-in spool design are integrated for the whole PIP system.

A Stress Analysis of Wall-Thinned Feedwater Ring in Nuclear Power Plant (원전 증기발생기 감육 급수링 응력해석)

  • Min Ki Cho;Ki Hyun Cho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.56-63
    • /
    • 2021
  • The feedwater ring is an assembly in steam generator internal piping, which distributes feedwater into the secondary side of the steam generator. It consists of an assembly of carbon steel piping, pipe fittings and J-nozzles which are inserted into the top of the feedwater ring and welded to the diameter of the ring. The feedwater ring at the attachment region of the J-nozzle may be susceptible to flow accelerated corrosion (FAC) due to flow turbulence which increases local fluid velocities. If a J-nozzle becomes a loose part, it can cause damage to tubing near the tube sheet. In this paper, the structural stress analysis for a wall thinned feedwater ring and integrity evaluations under assumed loading conditions are carried out in compliance with ASME B&PV SecIII, NB-3200.

Experimental Study for the Reinforcement of District Heating Pipe (지역난방 열배관 강화를 위한 실증시험 연구)

  • Kim, Jaemin;Kim, Jooyong;Cho, Chongdu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.245-252
    • /
    • 2016
  • In this study, an alternative bend design is proposed to overcome the aging problem in piping bends. In this design, the foam pad is not included. Finite element analysis was performed based on the total pipe diameter. From this analysis, the shape of the Shear Control Ring (SCR) was determined. Temperature, stress, and other data of the proposed reinforced pipe were acquired and analyzed after the test was performed. The value of the thermal stress for the reinforced steel pipe satisfied the required standard without the foam pad based on the manufacturing of the reinforced fitting and construction site of the test. The reinforcement provided a shear strength level for the foam pad that resulted in maximum shear stress less than stress based on the original foam pad applied at the pipe bend. Additionally, an increasing factor of safety effect for the reinforced fitting application was discovered.

The Resistance Characteristics and Reliability Evaluation of an Insulation Ring Type of Corrugated Stainless Steel Tubing(CSST) (절연링형 금속플렉시블호스(CSST)의 저항 특성 및 신뢰성 평가)

  • Lee, Jang-Woo;Kim, Jeom-Sik;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.25-31
    • /
    • 2016
  • This paper has analyzed the structure, applicable regulations and the resistance characteristics of insulation ring type of CSST (Corrugated Stainless Steel Tubing for Gas). With the flammability test conducted in accordance with KS C IEC 60811-1-1, the evaluation of insulation resistance, temperature characteristics, and reliability has been conducted. An insulation ring type CSST consists of protective coating, tube, nut, insulation ring, packing, socket, and ball valve. Connecting an insulation ring type CSST to gas tubings for gas appliance is not permitted, moreover, the product shall be installed inside a sleeve pipe in case of buried installation such as the ceiling. Damages on protective coating and tube were detected when fire was applied to the test sample with a portable torch for 60 seconds. The insulation resistance of a normal product was $49.59M{\Omega}$, while that of the product completed the flammability test reduced to $9.21M{\Omega}$. The mean insulation resistance within the confidence Interval of 95% using the mini tap program 17 was $49.59M{\Omega}$ and the mean insulation resistance within the confidence interval reduced to $9.21M{\Omega}$. In the normal distribution analysis of 95% confidence interval, the value-P of the normal product was stable at 0.075 and AD(Anderson-Darling) statistic value was turned out to be 0.063, which is very normal, and the standard deviation was analyzed as 0.2586. The value P of the product completed the flammability test resulted in 0.005, the AD was 1.355 and the standard deviation reduced to 0.07908.

Stability Evaluation for a riverbed tunnel in the Han River at the Fault Zone Crossing (한강 단층대를 통과하는 하저터널의 안정성 확보에 관한 연구)

  • Woo, Jong-Tae;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.225-231
    • /
    • 2001
  • When building tunnels beneath riverbeds where very large quantities of groundwater inflow exist, added to high water head the soil supporting conditions are very poor because the soil consists of sand and silt, etc. It is necessary to have grouting and mini pipe roof installed in the region for ground reinforcement to decrease permeability. According to this result of horizontal boring and laboratory soil testing, ground reinforcement was achieved by L.W grouting for range of 3.0 times the tunnel radius, to increase stability of the tunnel we used the ling-cut method, 0.8m for one step excavation, shotcrete with 25cm thick, steel lib with H-$125{\times}125$. and a temporary shotcrete invert 20cm thick was installed to prevent deformation of the tunnel.

  • PDF