• Title/Summary/Keyword: Steel Deck Bridge

Search Result 291, Processing Time 0.021 seconds

Evaluation on Applicability of Stress Relief Hole for Improvement of Fatigue Stress Capacity of Steel Structural Details (강구조상세부의 피로저항능력 개선을 위한 응력완화홀 적용성 평가)

  • Jung, Kyoung Sup;Nam, Seung Hoon;Kim, Kyoung Nam;Yang, Keon Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.451-461
    • /
    • 2013
  • In steel bridges, there are several details that constrain the deformation such as buckling by external forces. Most of these details which are composed of the intersection members have scallops in order to exclude the weld defects inherently and to get the ease of fabrication and also to decrease the stress concentration. In this study, stress relief hole (SRH) near stress concentration zone with detail category D or under is proposed as a method to improve the resistance on the fatigue crack initiation to detail category C. And the effects of the appropriate size and location of SRH were examined and the applicability to improve the fatigue resistance of the floorbeam web and the rib wall at rib/floorbeam intersection in the orthotropic steel deck bridge was evaluated.

An Experimental Study on the Longitudinal Resistance Behavior of an Existing Ballastless Steel Plate Girder Bridge (기존 무도상 판형교 궤도의 종저항거동에 대한 실험)

  • Kim, Kyoungho;Hwang, Inyoung;Baek, Inchul;Choi, Sanghyun
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.327-337
    • /
    • 2018
  • Since the track of the ballastless steel plate girder bridge is connected to a main girder without a deck and a ballast, the impact generated by train passage is transferred directly to bridge main members, and it can cause frequent damage of the bridge as well as higher noise and vibration level. Applying the CWR (Continuously Welded Rail) technology can reduce this structural problems, and, to this end, it is necessary to understand the characteristics of factors influencing vehicle-track or track-bridge interaction. In this paper, experimental study results are presented for examining the longitudinal resistance characteristics of the track, including a rail fastener, a sleeper fastener, and a track skeleton, installed on a ballastless steel plate girder bridge. The experiment is conducted using a disposed bridge from service, which is transported to a laboratory. The experimental results show that the rail fastener satisfies the performance criteria of the longitudinal resistance presented in KRS TR 0014-15, and the longitudinal resistance of old and new type sleeper fasteners is higher than the values provided in the existing research. Also, the unloaded longitudinal resistance of the ballastless track is between the ballast and the concrete tracks.

An Experimental Study on Reusing of Waste Materials in Ligh-Weigh Composite Bridge Deck for Civil Structures (폐기물의 재이용과 경량 합성 상판 개발을 위한 실험적 연구)

  • 김경진;박제선;민창동;오오다도시아끼
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.123-130
    • /
    • 1994
  • In this paper, a development of composite bridge decks was proposed for design of civil and architectural structures to reuse the empty cans and plastics etc. The experimental specimens were made of rigid foamed urethane taking advantage of corrosionlessness in steel bridge decks, and simplicity in the field construction. 'Therefore, introducing the empty cans into the rigid foamed urethane, this experimentation have been carried out to demonstrate and evaluate the structural behavior by means of loading and vibration tests in composite bridge decks. Consequently, it was possible that had a good effect on the structural behavior by absorbing the strain due to the low elasticity of rigid foamed urethane, and not influence to cans in composite bridges.

Evaluation of typhoon induced fatigue damage using health monitoring data for the Tsing Ma Bridge

  • Chan, Tommy H.T.;Li, Z.X.;Ko, J.M.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.5
    • /
    • pp.655-670
    • /
    • 2004
  • This paper aims to evaluate the effect of typhoons on fatigue damage accumulation in steel decks of long-span suspension bridges. The strain-time histories at critical locations of deck sections of long-span bridges during different typhoons passing the bridge area are investigated by using on-line strain data acquired from the structural health monitoring system installed on the bridge. The fatigue damage models based on Miner's Law and Continuum Damage Mechanics (CDM) are applied to calculate the increment of fatigue damage due to the action of a typhoon. Accumulated fatigue damage during the typhoon is also calculated and compared between Miner's Law and the CDM method. It is found that for the Tsing Ma Bridge case, the stress spectrum generated by a typhoon is significantly different than that generated by normal traffic and its histogram shapes can be described approximately as a Rayleigh distribution. The influence of typhoon loading on accumulative fatigue damage is more significant than that due to normal traffic loading. The increment of fatigue damage generated by hourly stress spectrum for the maximum typhoon loading may be much greater than those for normal traffic loading. It is, therefore, concluded that it is necessary to evaluate typhoon induced fatigue damage for the purpose of accurately evaluating accumulative fatigue damage for long-span bridges located within typhoon prone regions.

Experimental Study on the the Maglev Train Guideway Girder : Composite System with PSC-U Type Girder and Precast Deck (자기부상열차 가이드웨이 거더의 실험적 연구: PSC-U 형 거더와 프리캐스트 바닥판의 합성 시스템)

  • Jin, Byeong-Moo;Kim, In-Gyu;Kim, Young-Jin;Yeo, In-Ho;Chung, Won-Seok
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.46-55
    • /
    • 2008
  • Maglev is a system that a train runs levitated above a rail. Therefore it is very important to maintain a constant levitation gap for achieving serviceability and ride comfort. This study is a cooperation research subject of the 3-1 subject, performance improvement of maglev track structures, of the Center for Urban Maglev Program in Korea, started in 2006. The aim of this study is development of rapid constructions of bridge superstructure for maglev. At present, precast deck is widely used because of its superiority to cast-in-place concrete on quality and the term of works. The research group suggested basic systems of maglev guideway with PSC-U type and trapezoidal open steel box type girder, and precast deck, cooperating with Korea Railroad Research Institute, the managing institute of the 3-1 subject. In this study, longitudinally full-scale guideway girder system was fabricated and static/dynamic test of the girder was performed for the purpose of the performance evaluation.

  • PDF

A Study on Experiment and Structural Analysis for High-Durability of Orthotropic Steel Deck Bridge (고내구성을 위한 강바닥판교의 실험 및 해석 연구)

  • Kong, Byung-Seung;Kim, Min-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.462-467
    • /
    • 2007
  • From the research which it sees verification of the whole interpretation and local interpretation of the durability steel deck bridge a static test and it produces the test body which it sells with character and it executes smallness pul lek detailed interpretation it leads and the appropriate characteristic of smallness pul lek detailed interpretation and to sleep a nominal stress price and it compares it judges it does. The stress quality from each structure region which it follows in load stock location it analyzes and from the hazard which evaluates, the objective region the length rib and the bottom grater weld zone, the length rib and width rib connection department and the width rib with the father it divided. It investigated the stress distribution of the test body from these objective location, FEM interpretation it led and the conduct against each structure state tax it analyzed. General conduct the load stock location the floor plate is located in the center with interpretation price together symmetry characteristic to seem, it cannot be like that it cannot there is one actual test price. Like this reason the length rib and width rib connection actually production even production characteristic security it is a day when it is impossible with the curvature junction department which it blows, it follows in examination body deferment condition and form feed with the fact that it is visible a big difference even with error of some it becomes. Consequently for a data and the research which are more accurate it is judged with the fact that the effort which is prudent will be necessary.

  • PDF

Effect of hysteretic constitutive models on elasto-plastic seismic performance evaluation of steel arch bridges

  • Wang, Tong;Xie, Xu;Shen, Chi;Tang, Zhanzhan
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1089-1109
    • /
    • 2016
  • Modified two-surface model (M2SM) is one of the steel elasto-plastic hysteretic constitutive models that consider both analysis accuracy and efficiency. However, when M2SM is used for complex strain history, sometimes the results are irrational due to the limitation of stress-strain path judgment. In this paper, the defect of M2SM was re-modified by improving the judgment of stress-strain paths. The accuracy and applicability of the improved method were verified on both material and structural level. Based on this improvement, the nonlinear time-history analysis was carried out for a deck-through steel arch bridge with a 200 m-long span under the ground motions of Chi-Chi earthquake and Niigata earthquake. In the analysis, we compared the results obtained by hysteretic constitutive models of improved two-surface model (I2SM) presented in this paper, M2SM and the bilinear kinematic hardening model (BKHM). Results show that, although the analysis precision of displacement response of different steel hysteretic models differs little from each other, the stress-strain responses of the structure are affected by steel hysteretic models apparently. The difference between the stress-strain responses obtained by I2SM and M2SM cannot be neglected. In significantly damaged areas, BKHM gives smaller stress result and obviously different strain response compared with I2SM and M2SM, and tends to overestimate the effect of hysteretic energy dissipation. Moreover, at some position with severe damage, BKHM may underestimate the size of seismic damaged areas. Different steel hysteretic models also have influences on structural damage evaluation results based on deformation behavior and low cycle fatigue, and may lead to completely different judgment of failure, especially in severely damaged areas.

Behavior of grouped stud shear connectors between precast high-strength concrete slabs and steel beams

  • Fang, Zhuangcheng;Jiang, Haibo;Chen, Gongfa;Dong, Xiaotong;Shao, Tengfei
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.837-851
    • /
    • 2020
  • This study aims to examine the interface shear behavior between precast high-strength concrete slabs with pockets and steel beam to achieve accelerated bridge construction (ABC). Twenty-six push-out specimens, with different stud height, stud diameter, stud arrangement, deck thickness, the infilling concrete strength in shear pocket (different types of concrete), steel fiber volume of the infilling concrete in shear pocket concrete and casting method, were tested in this investigation. Based on the experimental results, this study suggests that the larger stud diameter and higher strength concrete promoted the shear capacity and stiffness but with the losing of ductility. The addition of steel fiber in pocket concrete would promote the ductility effectively, but without apparent improvement of bearing capacity or even declining the initial stiffness of specimens. It can also be confirmed that the precast steel-concrete composite structure can be adopted in practice engineering, with an acceptable ductility (6.74 mm) and minor decline of stiffness (4.93%) and shear capacity (0.98%). Due to the inapplicability of current design provision, a more accurate model was proposed, which can be used for predicting the interface shear capacity well for specimens with wide ranges of the stud diameters (from13 mm to 30 mm) and the concrete strength (from 26 MPa to 200 MPa).

Impact Effects of Multi-Girder Steel Bridges Under Various Traffic Conditions (차량하중에 의한 다주형 강판형교의 충격계수 변화에 관한 연구)

  • 김상효;허진영
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.233-240
    • /
    • 1997
  • The study presents the linear dynamic analysis of multi-girder steel bridges under vehicular movement to examine the performance characteristics due to the various structural and loading conditions. The road surface roughness and bridge-vehicle interactions are considered. The road surface profiles for the approaching roadway and bridge decks are generated from power spectral density functions for different road roughness conditions. A new filtering method using the wheel trace is proposed to obtain the more rational bridge-vehicle interactions from the randomly generated road surface. The possible settlement condition between the bridge deck and approaching roadway is also included. The dynamic responses of various bridges designed according to current design practice are examined, in which important structural parameters(such as span length, girder spacing, etc.) are considered systematically. In addition to the basic loading conditions due to a single truck passing on the bridge, the traffic conditions of multi-truck traveling either consecutively on the same lane or side-by-side on the adjacent lanes are also evaluated.

  • PDF

Comparison of Aerodynamic Responses for Cable-Stayed Bridges during Construction with Temporary Stabilizing Measures (내풍케이블 배치에 따른 가설 중 사장교의 공기역학적 거동 비교)

  • Cho, Jae Young;Kim, Young Min;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.147-160
    • /
    • 2007
  • In this paper, we described the aeroelastic full-bridge model tests that were conducted to investigate the effect of alternative temporary stabilizing measures for thecable-stayed bridge during construction to ensure aerodynamic stability in the event of a typhoon or similar disasters. The effect of alternative temporary stabilizing measures was investigated through various configurations on two cable-stayed bridges with a main span of 475 m and 230 m, respectively. To investigate the bridge's aerodynamic behaviour and dynamic wind force during construction, the deflections at the end of the cantilever, the accelerations atthe top of the pylon and the moments at the lower part of the pylon were measured. As the result, the system with two sets of vertical cables per cantilever seemed to be the overall most effective solution, but the system with single vertical cable may also work. The combined system using the caisson support and vertical cables and the system with two sets of inclined cables per cantilever on the same anchor block may also be a solution. The inclined cables from the caisson to the girder were effective for some early stages of erecting the deck.