• Title/Summary/Keyword: Steel Core

Search Result 805, Processing Time 0.029 seconds

Lateral-resisting Structural Systems for Tall Modular Buildings (모듈러 건축물의 수평력 저항 구조시스템)

  • Lee, Chang-Hwan;Chung, Kwang-Ryang
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.2
    • /
    • pp.79-88
    • /
    • 2016
  • Modular buildings are constructed by assembling modular units which are prefabricated in a factory and delivered to the site. However, due to a problem of noise between floors, concrete slab is usually poured at the top or bottom level of a modular unit in Korea. This greatly increases the weight of buildings, but designing vertical members of modular units to resist overall gravity loads is very inefficient. In this study, considering domestic building construction practices, feasible structural systems for tall modular buildings are proposed in which separate steel frames and reinforced concrete core walls are designed to resist gravity and lateral loads. To verify performance, a three-dimensional structural analysis has been performed with two types of prototype buildings, i.e., a residential building and a hotel. From the results, wind-induced lateral displacements and seismic story drifts are examined and compared with their limit values. Between the two kinds of buildings, the efficiency of the proposed system is also evaluated through a comparison of the weight of structural components. Finally, the effect of a floor diaphragm on the overall behavior is analyzed and discussed.

Treatment of rolling cooling waste water by superconductor HGMS method (초전도 자기분리에 의한 냉연공정 폐수처리)

  • Kim, Tae-Hyung;Ha, Dong-Woo;Oh, Sang-Soo;Kim, Young-Hun;Ha, Tae-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.295-295
    • /
    • 2008
  • This study introduced waste water treatment method applied superconductor HGMS(High Gradient Magnetic Separation). HGMS method treat high efficient method for various waste water. we have surveyed superconducting magnetic separation technology and reviewed the status of related industries using applied superconductivity. We fabricated the prototypes of magnetic matrix filter consisting of stainless steel mesh, which is a core component in the magnetic separation system. In our basic preliminary experiment using HGMS, it was made clear that the fine para-magnetic particles in the rolling colling wasted water obtained from rolling process of POSCO can be separated with high efficiency.

  • PDF

A Study on the Adaptable Long Life Multi-dwelling Housing Design in Korea (융통성을 고려한 장수명 공동주택 디자인에 관한 연구)

  • Kim, Jin-Hee
    • Korean Institute of Interior Design Journal
    • /
    • v.15 no.6 s.59
    • /
    • pp.172-177
    • /
    • 2006
  • Most of the Korean multi-dwelling houses have less than 20 years of lifespan. Because the environmental issues such as energy consumption, limited resources, and demolition waste problems became been more and more critical, we now need to focus on long lasting and adaptable buildings. Korean wall bearing apartment buildings are constructed with site cast concrete for core, exterior, and interior together with pipes varied, so when the buildings are old and life style of the users changes, it is difficult to maintain and renovate these buildings. In this study, to resolve the problems described above, two types of Korean long life multi-dwelling housing models which represent improved durability and adaptability responding user's needs and life style changes were proposed with various methods as follows: Either column and beam structure or flat slab structure was used to utilize space better. To make maintenance easier and renovation economical for both public space and each unit, plumbing pipes, ducts, and conduits were clustered at the cores and public corridors with access doors and light weight partitions with steel studs and raised floors or above-ceiling spaces were used in lieu of site cast concrete walls and floor slabs with varied pipes.

Experimental study of structural behavior of 80MPa concrete outrigger member using post tension method (PT공법을 적용한 80MPa급 콘크리트 아웃리거부재의 실험적 연구)

  • Choi, Jong-Moon;Kim, Woo-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.31-34
    • /
    • 2009
  • Large outrigger elements tie the concrete core to perimeter columns, significantly increasing the building's lateral stiffness as well as its resistance to overturning due to wind. The outriggers are deep elements, and large tie forces are resisted by top and bottom heavy longitudinal reinforcing and vertical ties. To reduce construction costs, all primary reinforcing bars in outrigger levels are SD500. Further, concrete strengths of 80MPa have been specified for outrigger elements. However, the reductions in the amount of concrete and reinforcement steel are more increased in tall building. With these backgrounds, 80MPa high strength concrete outrigger system using post tension method is developed. Significant economic savings can be made by reducing the element sizes and material content. The developed outrigger system is designed using strut-and-tie models. In addition, four 1/4-scale test specimens were selected from the same prototype structure. The results from the tests are confirmed that the structural behaviors of the developed outrigger member have better capacities than those of a conventional method.

  • PDF

Condition assessment of fire affected reinforced concrete shear wall building - A case study

  • Mistri, Abhijit;Pa, Robin Davis;Sarkar, Pradip
    • Advances in concrete construction
    • /
    • v.4 no.2
    • /
    • pp.89-105
    • /
    • 2016
  • The post - fire investigation is conducted on a fire-affected reinforced concrete shear wall building to ascertain the level of its strength degradation due to the fire incident. Fire incident took place in a three-storey building made of reinforced concrete shear wall and roof with operating floors made of steel beams and chequered plates. The usage of the building is to handle explosives. Elevated temperature during the fire is estimated to be $350^{\circ}C$ based on visual inspection. Destructive (core extraction) and non-destructive (rebound hammer and ultrasonic pulse velocity) tests are conducted to evaluate the concrete strength. X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) are used for analyzing micro structural changes of the concrete due to fire. Tests are conducted for concrete walls and roof slab on both burnt and unburnt locations. The analysis of test results reveals no significant degradation of the building after the fire which signifies that the structure can be used with full expectancy of performance for the remaining service life. This document can be used as a reference for future forensic investigations of similar fire affected concrete structures.

Hysteresis of concrete-filled circular tubular (CFCT) T-joints under axial load

  • Liu, Hongqing;Shao, Yongbo;Lu, Ning;Wang, Qingli
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.739-756
    • /
    • 2015
  • This paper presents investigations on the hysteretic behavior of concrete-filled circular tubular (CFCT) T-joints subjected to axial cyclic loading at brace end. In the experimental study, four specimens are fabricated and tested. The chord members of the tested specimens are filled with concrete along their full length and the braces are hollow section. Failure modes and load-displacement hysteretic curves of all the specimens obtained from experimental tests are given and discussed. Some indicators, in terms of stiffness deterioration, strength deterioration, ductility and energy dissipation, are analyzed to assess the seismic performance of CFCT joints. Test results indicate that the failures are primarily caused by crack cutting through the chord wall, convex deformation on the chord surface near brace/chord intersection and crushing of the core concrete. Hysteretic curves of all the specimens are plump, and no obvious pinching phenomenon is found. The energy dissipation result shows that the inelastic deformation is the main energy dissipation mechanism. It is also found from experimental results that the CFCT joints show clear and steady stiffness deterioration with the increase of displacement after yielding. However, all the specimens do not perform significant strength deterioration before failure. The effect of joint geometric parameters ${\beta}$ and ${\gamma}$ of the four specimens on hysteretic performance is also discussed.

An Analytical Study on Application of Section Increment at Internal Support with External Prestressing Method to Continuous Steel Plate Girder Bridge (연속 강 플레이트거더교에서 내부지점보강과 외부프리스트레싱의 적용에 관한 해석적 연구)

  • Shim, Jae-Joong;Hong, Sung-Nam;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.128-136
    • /
    • 2010
  • It has been verified that there is an effect of diminishing in section bringing in internal core section reinforcement and external prestressing rather than general plate-girder bridge as a consequence of analysis. In particular, positive effect was seen in the aspect of usability when external prestressing was in application as rises gained from it minimized the hanging down of a bridge. Based on the result of analysis, a sectional diagram applicable per number of girder has been illustrated which made it possible to estimate the intensity of internal stress in the futurewhere number of girder is limited to 4 and regression equation is presented after regression analysis has been carried out.

Fabrication and Characteristics of Field Coils for HTS Motor (고온초전도 동기모터의 계자코일 제작과 특성)

  • Sohn, M.H.;Lee, E.Y.;Baik, S.K.;Jo, Y.S.;Kwon, W.S.;Kwon, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.735-737
    • /
    • 2003
  • A superconducting motor consisting of high temperature superconducting (HTS) rotor and air-core stator is under development in Korea Electrotechnology Research Institute. HTS motor was designed for having the rated power of 100hp at 1800 rpm. HTS field winding is composed of sixteen HTS race track shaped coils wound with stainless steel-reinforced Bi-2223 tape conductor by react and wind fabrication method. Nomex Paper was used for electrical insulation. Each of four magnet pole assemblies was constructed with four double pancake sub-coils, mechanically stacked and electrically in series. Four magnet assemblies were fixed on an aluminum support structure to make effective heat transfer. Critical current (Ic) of HTS field winding was 41A but minimum Ic of sub-coils was 35A at 77K and self field. Joule heat generated in HTS field winding was 2.11W at 77K and 35A.

  • PDF

Test of Insulation of Double Pancake Windings for a 1MVA HTS Transformer (1MVA 고온초전도 변압기용 더블 팬케이크 권선의 절연시험)

  • Kim, Sung-Hoon;Kim, Woo-Seok;Choi, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won;Han, Jin-Ho;Hahn, Song-Yop;Song, Hee-Suck;Park, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1015-1017
    • /
    • 2003
  • In a research and development team of high temperature superconducting (HTS) transformer for power distribution, prior to manufacture a single phase 1MVA 22.9 kV/6.6 kV HTS transformer, a 1MVA transformer for insulation test with windings made of copper tapes with the same size as BSCCO-2223 HTS tape was manufactured. The test transformer was composed of both the copper windings of double pancake type and the shell type core of laminated silicon steel plates. The characteristics tests of the test transformer were performed, such as no load test, load test and short test at 77k using liquid nitrogen. Insulation tests, lightning impulse test, power-frequency voltage test and external insulation test, were accomplished also.

  • PDF

A Study on the Effects of Products Section by Cutting Punch's Edge Angle during Roll Forming Process (롤 포밍 공정에서 컷팅 펀치 인선 각도가 제품 절단에 미치는 영향에 관한 연구)

  • Cheong, Mun-Su;Kim, Sei-Whan;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.44-49
    • /
    • 2016
  • The roll forming produces mass products using the continuous production process. Also we need the process that continuous long material or goods cutting into a desired length. Our study uses 3-D driving cutter and roll forming material as SPCC to investigate this. When we cut the material using the process of roll forming, the shear resistance is raised at the cutting punch's edge. The result is remained the trouble about burr and progressive deformation on the material. This study shows the method minimizing the above trouble. The material of punch was considering heat generated on the continuous production process. So we used the type of STD 61 for the material of punch and had the vacuum heat treatment for the surface hardness of HRC 53. The structure of the mold is designed with forming a double cam die at the upper punch and the both sides of central core. We conducted the experiment three times. In the result when had to make V-groove within the angle between 105 and 110 on the punch front end, we could get the minimum shear resistance on the punch front end. Also with the same condition we minimizes the material jams in the continuous production process.