• Title/Summary/Keyword: Steel Connection

Search Result 1,237, Processing Time 0.028 seconds

An investigation of anchorage to the edge of steel plates bonded to RC structures

  • Kara, M.E.;Firat, F.K.;Sonmez, M.;Karabork, T.
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.25-43
    • /
    • 2016
  • This paper presents the results of an experimental study investigating the effects of anchorage systems used in externally bonded steel plates on the strength and ductility of reinforced concrete structures. In the literature, diagonal steel plates bonded to frames were designed to be more flexible than the connections to eliminate the possible effect of the connection flexibility. However, to better evaluate the performance of the strengthened structures, the strength and behavior of connections should also be considered. The purpose of this study was to experimentally investigate the effects of different connection types of steel plates bonded to the frame using anchors on the strengthened RC structures. For this purpose, eleven specimens were designed to simulate the interior and exterior connection behavior. Two of these were used as the control beams and remaining nine for the investigation of the functionality of the end steel plates. Experimental results show that the load carrying capacity of the strengthened beams is directly related to the connection types of the steel plates. For the interior connections, L-shaped end plates that were strengthened using steel anchors must have adequate stiffness to prevent its shape. While, for the exterior connections, the connection with three anchors carried more load than the other exterior connections.

Novel pin jointed moment connection for cold-formed steel trusses

  • Mathison, Chris;Roy, Krishanu;Clifton, G. Charles;Ahmadi, Amin;Masood, Rehan;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.453-467
    • /
    • 2019
  • Portal frame structures, made up of cold-formed steel trusses, are increasingly being used for lightweight building construction. A novel pin-jointed moment connector, called the Howick Rivet Connector (HRC), was developed and tested previously in T-joints and truss assemblage to determine its reliable strength, stiffness and moment resisting capacity. This paper presents an experimental study on the HRC, in moment resisting cold-formed steel trusses. The connection method is devised where intersecting truss members are confined by a gusset connected by HRCs to create a rigid moment connection. In total, three large scale experiments were conducted to determine the elastic capacity and cyclic behaviour of the gusseted truss moment connection comprising HRC connectors. Theoretical failure loads were also calculated and compared against the experimental failure loads. Results show that the HRCs work effectively at carrying high shear loads between the members of the truss, enabling rigid behaviour to be developed and giving elastic behaviour without tilting up to a defined yield point. An extended gusset connection has been proposed to maximize the moment carrying capacity in a truss knee connection using the HRCs, in which they are aligned around the perimeter of the gusset to maximize the moment capacity and to increase the stability of the truss knee joint.

Structural Performance Evaluation of Seismic Wide-flanged Beam-to-Rectangular Steel Tube Column Connection Details (내진 각형강관 기둥-H형강 보 접합상세의 구조성능평가)

  • Jang, Bo-Ra;Shim, Hyun-Ju;Kim, Yong-Ick;Chung, Jin-An;Oh, Young-Suk;Kim, Sang-Seup;Choi, Byong-Jeong;Lee, Eun-Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.305-312
    • /
    • 2010
  • The objective of this paper is to examine the structural performance of steel moment-resisting frames on the various connection details of Seismic Wide-flanged Beam-to-Rectangular Steel Tube Column connections. Although compared to an H-shaped steel tube, a rectangular steel tube has many advantages and is more efficient, its application is limited due to the lack of experience in using it and the connection details. Existing steel moment connections using the rectangular steel tube are mainly used through plate diaphragms. The processing of construction of the rectangular steel tube is so complicated that it is hard to apply it in the field. In this study, the structural performance and the earthquake capacity of the connection details that do not cut the rectangular steel tube column were investigated. A comparative analysis of the strength, rigidity, and energy absorption capacity of the welded connection details using an end-plate and a haunch was also performed.

Bolted end plate connections for steel reinforced concrete composite structures

  • Li, Xian;Wu, Yuntian;Mao, Weifeng;Xiao, Yan;Anderson, J.C.;Guo, Yurong
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.291-306
    • /
    • 2006
  • In order to improve the constructability and meanwhile ensure excellent seismic behavior, several innovative composite connection details were conceived and studied by the authors. This paper reports experimental results and observations on seismic behavior of steel beam bolted to reinforced concrete column connections (bolted RCS or BRCS). The proposed composite connection details involve post tensioning the end plates of the steel beams to the reinforced concrete or precast concrete columns using high-strength steel rods. A rational design procedure was proposed to assure a ductile behavior of the composite structure. Strut-and-tie model analysis indicates that a bolted composite connection has a favorable stress transfer mechanism. The excellent capacity and behavior were then validated through five full-scale beam to column connection model tests.

A Study on the Simple Design Method of Semi-Rigid Connection with Angle in Steel Structure (강구조에서 ㄱ형강을 이용한 반강접 접합의 간편 설계)

  • Heo, Myong-Jae;Kim, Hong-Geun;Choi, Won-Gu
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.261-273
    • /
    • 2011
  • Recently, the demands for steel frame are increasing because of the trend and due to the demand for bigger and higher buildings. In the analysis of typical steel frame, connections are based on the idealized fixed or pinned connection. A fixed connection assumes that the relative angle of each member before deformation is the same after the transformation. Therefore, the stiffener reinforces the connection to sufficient rigidity and stability of the panel zone. In the economical aspect, however, the necessity of connection that the stiffener reinforcement has omitted is increasing due to the excessive production as well as labor costs of connection. In contrast, pinned connection is assumed that bending moments between the beams and columns do not transfer to each member. This is easy to make in the plant and the construction is simple. However, the structural efficiency is reduced in pinned connection because connection cannot transfer moments. The introduction of this semirigid process can decide efficient cross-sectional dimensions that promote ease in the course of structural erection, as performed by members in the field-a call for safety in the entire frame. Therefore, foreign countries exert efforts to study the practical behavior and the results are applied to criterion. This paper analyzes the semirigid connection of domestic steel by design specifications of AISC/LRFD and make data bank that pertain to each steel. After wards, the results are compared to those of idealized connection; at the same time, this paper presents a design method that matches economic efficiency, end-fixity, and rotational stiffness.

Numerical cyclic behavior of T-RBS: A new steel moment connection

  • Ataollahi, Saeed;Banan, Mohammad-Reza;Banan, Mahmoud-Reza
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1251-1264
    • /
    • 2016
  • After observing relatively poor performance of bolted web-welded flange beam-to-column connections during 1994 Northridge earthquake, various types of connections based on two concepts of: (i) strengthening the connection; and (ii) weakening the beam ends were proposed. Among these modified or newly proposed connections, bolted T-stub connection follows the concept of strengthening. One of the connections with the idea of weakening the beam ends is reduced beam section (RBS). In this paper, finite element simulation is used to study the cyclic behavior of a new proposed connection developed by using a combination of both mentioned concepts. Investigated connections are exterior beam-to-column connections designed to comply with AISC provisions. The results show that moment capacity and dissipated energy of the new proposed connection is almost the same as those computed for a T-stub connection and higher than corresponding values for an RBS connection.

Experimental investigation of carbon steel and stainless steel bolted connections at different strain rates

  • Cai, Yancheng;Young, Ben
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.551-565
    • /
    • 2019
  • A total of 36 carbon steel and stainless steel bolted connections subjected to shear loading at different strain rates was experimentally investigated. The connection specimens were fabricated from carbon steel grades 1.20 mm G500 and 1.90 mm G450, as well as cold-formed stainless steel types EN 1.4301 and EN 1.4162 with nominal thickness 1.50 mm. The connection tests were conducted by displacement control test method. The strain rates of 10 mm/min and 20 mm/min were used. Structural behaviour of the connection specimens tested at different strain rates was investigated in terms of ultimate load, elongation corresponding to ultimate load and failure mode. Generally, it is shown that the higher strain rate on the bolted connection specimens, the higher ultimate load was obtained. The ultimate loads were averagely 2-6% higher, while the corresponding elongations were averagely 8-9% higher for the test results obtained from the strain rate of 20 mm/min compared with those obtained from the lower strain rates (1.0 mm/min for carbon steel and 1.5 mm/min for stainless steel). The connection specimens were generally failed in plate bearing of the carbon steel and stainless steel. It is shown that increasing the strain rate up to 20 mm/min generally has no effect on the bearing failure mode of the carbon steel and stainless steel bolted connections. The test strengths and failure modes were compared with the results predicted by the bolted connection design rules in international design specifications, including the Australian/New Zealand Standard (AS/NZS4600 2018), Eurocode 3 - Part 1.3 (EC3-1.3 2006) and North American Specification (AISI S100 2016) for cold-formed carbon steel structures as well as the American Specification (ASCE 2002), AS/NZS4673 (2001) and Eurocode 3 - Part 1.4 (EC3-1.4 2015) for stainless steel structures. It is shown that the AS/NZS4600 (2018), EC3-1.3 (2006) and AISI S100 (2016) generally provide conservative predictions for the carbon steel bolted connections. Both the ASCE (2002) and the EC3-1.4 (2015) provide conservative predictions for the stainless steel bolted connections. The EC3-1.3 (2006) generally provided more accurate predictions of failure mode for carbon steel bolted connections than the AS/NZS4600 (2018) and the AISI S100 (2016). The failure modes of stainless steel bolted connections predicted by the EC3-1.4 (2015) are more consistent with the test results compared with those predicted by the ASCE (2002).

Analysis of Mechanical Properties in Steel Frame with Ductile Connections

  • Han, Minglan;Wang, Shuai;Wang, Yan
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1464-1469
    • /
    • 2018
  • Steel frames with ductile connections have good seismic performance under strong earthquake, they are now popular for high seismic design. In order to simplify the process of numerical analysis of the steel frames with ductile connections, simplified connection models are introduced, two types of springs are placed in the simplified connection model, which can simulate deformation of the panel zone and members. 6-story-3-bay steel frames with ductile connections are simplified and carried out modal analysis, fundamental periods of the frames predicted by finite-element analysis for simplified steel frame models were compared to the results for actual frame models. 2-story steel frame with reduced beam section connections is simplified and carried out pseudo-static analysis, hysteretic curves and skeleton curves of the frame obtained by finite-element analysis for simplified steel frame model are compared to test results. The comparison show that the difference between them is small, it is reliable and effective to predict mechanical properties of the steel frame with ductile connection by finite-element analysis of simplified steel frame model.

Failure mechanisms of externally prestressed composite beams with partial shear connection

  • Dall'Asta, A.;Dezi, L.;Leoni, G.
    • Steel and Composite Structures
    • /
    • v.2 no.5
    • /
    • pp.315-330
    • /
    • 2002
  • This paper proposes a model for analysing the non-linear behaviour of steel concrete composite beams prestressed by external slipping cables, taking into account the deformability of the interface shear connection. By assuming a suitable admissible displacement field for the composite beam, the balance condition is obtained by the virtual work principle. The solution is numerically achieved by approximating the unknown displacement functions as series of shape functions according to the Ritz method. The model is applied to real cases by showing the consequences of different connection levels between the concrete slab and the steel beam. Particular attention is focused on the limited ductility of the shear connection that may be the cause of premature failure of the composite girder.

Implementation of steel connection and interface using Xsteel (Xsteel을 사용한 접합부 자동화 시스템의 구현 및 인터페이스 형성)

  • 조효남;조영상;박미연;이승근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.305-312
    • /
    • 2003
  • Recently, with a progressive development of hardware of computer, the internet and network technology, the environment of construction varies rapidly due to increase the complex form in structure shape and system. With variations, the CAD system for design and products also varies from 2D system to 3D system. This study mainly deals with the methodology of automatic connection design of 3D CAD system, steel connection system (XSteel) using macro. First, using design program in the steel connection system, Xsteel, the joint connection macro will be made up and established the detail classes of design. The next, Database Program (Converter Program) related to the general structural analysis program (MIDAS) and the steel connection program (Xsteel) is constructed for data interface between two programs. From this study, if the merits of 3D CAD system and converter program are utilized well, it is expected that the time needed in modeling and the amounts due to material loses decrease gradually.

  • PDF