• 제목/요약/키워드: Steady state vibration

검색결과 228건 처리시간 0.028초

변위 가정법을 이용한 배관 시스템의 정상 상태 진동 해석 (The steady-state vibration analysis of piping system by applying displacement assumption method)

  • 이성현;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.827-830
    • /
    • 2011
  • The equation of motion for the piping system conveying harmonically pulsating fluid is presented. When pulsating fluid flows, the properties of this system like mass, stiffness and damp is changing according to fluid fluctuation. To solve the steady-state time response of this system, numerical integration method of differential equation was usually used. But this method has some problem such time consuming method and difficulty of converging. Therefore this research suggests reliable and efficient numerical method to solve steady-state time response of piping system by using displacement assumption method.

  • PDF

최단시간 제어기를 이용한 구동장치의 정상상태 오차개선 (Improvement of Steady-state Error in a Driving System with Time-optimal Controller)

  • 이성우;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제22권9호
    • /
    • pp.861-869
    • /
    • 2012
  • This paper presents a high performance position controller in a driving system using a time optimal control which is widely used to control driving systems to a desired reference position or velocity in minimum response time. The main purpose of this study is an improvement of transient response performance rather than steady-state response comparing with another various control strategies. In order to improve the performance of time optimal control, we tried to find the cause of the steady-state error in the driving system we have already made up and also suggest the newly modified type of time optimal control method in this paper.

회전하는 환상 디스크의 면내 고유진동 해석 (In-plane Natural Vibration Analysis of a Rotating Annular Disk)

  • 송승관;곽동희;김창부
    • 한국소음진동공학회논문집
    • /
    • 제19권2호
    • /
    • pp.208-216
    • /
    • 2009
  • In this paper, we present the equations of motion by which the natural vibration of a rotating annular disk can be analyzed accurately. These equations are derived from the theory of finite deformation and the principle of virtual work. The radial displacements of annular disk at the steady state where the disk is rotating at a constant angular velocity are determined by non-linear static equations formulated with 1-dimensional finite elements in radial direction. The linearlized equations of the in-plane vibrations at the disturbed state are also formulated with 1-dimensional finite elements in radial direction along the number of nodal diameters. They are expressed as in functions of the radial displacements at the steady state and the disturbed displacements about the steady state. In-plane static deformation modes of an annular disk are used as the displacement functions for the interpolation functions of the 1-dimensional finite elements. The natural vibrations of an annular disk with different boundary conditions are analyzed by using the presented model and the 3-dimensional finite element model to verify accuracy of the presented equations of motion. Its results are compared and discussed.

Steady-state response and free vibration of an embedded imperfect smart functionally graded hollow cylinder filled with compressible fluid

  • Bian, Z.G.;Chen, W.Q.;Zhao, J.
    • Structural Engineering and Mechanics
    • /
    • 제34권4호
    • /
    • pp.449-474
    • /
    • 2010
  • A smart hollow cylinder consisting of a host functionally graded elastic core layer and two surface homogeneous piezoelectric layers is presented in this paper. The bonding between the layers can be perfect or imperfect, depending on the parameters taken in the general linear spring-layer interface model. The effect of such weak interfaces on free vibration and steady-state response is then investigated. Piezoelectric layers at inner and outer surfaces are polarized axially or radially and act as a sensor and an actuator respectively. For a simply supported condition, the state equations with non-constant coefficients are obtained directly from the formulations of elasticity/piezoelasticity. An approximate laminated model is then introduced for the sake of solving the state equations conveniently. It is further assumed that the hollow cylinder is embedded in an elastic medium and is simultaneously filled with compressible fluid. The interaction between the structure and its surrounding media is taken into account. Numerical examples are finally given with discussions on the effect of some related parameters.

Two-way fluid-structure interaction simulation for steady-state vibration of a slender rod using URANS and LES turbulence models

  • Nazari, Tooraj;Rabiee, Ataollah;Kazeminejad, Hossein
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.573-578
    • /
    • 2019
  • Anisotropic distribution of the turbulent kinetic energy and the near-field excitations are the main causes of the steady state Flow-Induced Vibration (FIV) which could lead to fretting wear damage in vertically arranged supported slender rods. In this article, a combined Computational Fluid Dynamics (CFD) and Computational Structural Mechanic (CSM) approach named two-way Fluid-Structure Interaction (FSI) is used to investigate the modal characteristics of a typical rod's vibration. Performance of an Unsteady Reynolds-Average Navier-Stokes (URANS) and Large Eddy Simulation (LES) turbulence models on asymmetric fluctuations of the flow field are investigated. Using the LES turbulence model, any large deformation damps into a weak oscillation which remains in the system. However, it is challenging to use LES in two-way FSI problems from fluid domain discretization point of view which is investigated in this article as the innovation. It is concluded that the near-wall meshes whiten the viscous sub-layer is of great importance to estimate the Root Mean Square (RMS) of FIV amplitude correctly as a significant fretting wear parameter otherwise it merely computes the frequency of FIV.

선체에서 발생하는 진동과 소음의 진단 및 평가 (The Diagnosis and Evaluation of Vibration and Noise in Vessel)

  • 구동식;이정환;최병근;김원철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.42-49
    • /
    • 2008
  • Most of vessels are not evaluated for their vibration and noise effects to human body. The vibration and noise generated by engine and auxiliary machine in vessel is a negative element for seamen. Therefore, in this paper, the diagnosis and evaluation of vibration and noise from vessel is accomplished by a shipbuilding corporation. The vibration and noise transferred from engine room and auxiliary machine was measured during the steady-state operation, and the vibration and noise map of vessel was made. Also, in order to evaluate the ship environment for human, the diagnosis is carried out on the base of measurement results.

The Effect of Short-term Muscle Vibration on Knee Joint Torque and Muscle Firing Patterns during a Maximal Voluntary Isometric Contraction

  • Lee, Jiseop;Song, Junkyung;Ahn, Jooeun;Park, Jaebum
    • 한국운동역학회지
    • /
    • 제27권2호
    • /
    • pp.83-90
    • /
    • 2017
  • Objective: To investigate the effect of short-term vibration frequencies on muscle force generation capabilities. Method: Six healthy participants were recruited for this study and only their dominant leg was tested. The subjects were tested under five conditions of vibration frequencies with constant amplitude: 0 Hz (no vibration), 30 Hz, 60 Hz, and 90 Hz, and the vibration amplitude was 10 mm for all frequency conditions. The vibration was applied to the rectus femoris (RF). The subjects were then instructed to maintain a steady-state isometric knee joint torque (100 Nm) for the first 6 s. After the steady-state torque production, the subjects were required to produce isometric knee joint torque by leg extension as hard as possible with a start signal within the next 3 s. The vibration was applied for ~4 s starting from 1 s before initiation of the change in the steady-state knee joint torque. Results: The results showed that the maximum voluntary torque (MVT) of the knee joint increased with the vibration frequencies. On average, the MVTs were 756.47 Nm for 0 Hz (no vibration) and 809.61 Nm for 90 Hz. There was a significant positive correlation (r = 0.71) between the MVTs and integrated electromyograms (iEMGs). Further, the co-contraction indices (CCIs) were computed, which represent the ratio of the iEMGs of the antagonist muscle to the iEMGs of all involved muscles. There was a significant negative correlation (r = 0.62) between the CCIs and MVTs, which was accompanied by a significant positive correlation (r = 0.69) between the iEMGs of the vibrated muscle (RF). There was no significant correlation between the MVTs and iEMGs of the antagonist muscle. Conclusion: The results of this study suggest that the short-term vibration on the muscle increases the level of muscle activation possibly owing to the increased Ia afferent activities, which enhances the muscle force generation capability.

면내/면외변형을 고려한 이송되는 박막의 진동해석 (Vibration Analysis of an Axially Moving Membrane with In-Plane/out-of-Plane Deformations)

  • 신창호;정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.164-168
    • /
    • 2004
  • The vibration analysis of an axially moving membrane are investigated when the membrane has the two sets of in-plane boundary conditions, which are free and fixed constraints in the lateral direction. Since the in-plane stiffness is much higher than the out-of-plane stiffness, it is assumed during deriving the equations of motion that the in-plane motion is in a steady state. Under this assumption. the equation of out-of\ulcornerplane motion is derived, which is a linear partial differential equation influenced by the in-plane stress distributions. After discretizing the equation by using the Galerkin method, the natural frequencies and mode shapes are computed. In particular, we put a focus on analyzing the effects of the in-plane boundary conditions on the natural frequencies and mode shapes of the moving membrane.

  • PDF

증기 터빈에서의 고체 마찰에 의한 축 진동 특성 (Characteristics of shaft Vibration due to Rubbing in the Steam Turbines)

  • 하현천;최성필
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제30회 추계학술대회
    • /
    • pp.179-183
    • /
    • 1999
  • Rubbing occurs when a rotating element comes in contact with a stationary element. In the steam turbines, the rotating element is the rotor while the stationary elements are usually the oil deflectors and packing seals. Rubbing phenomenon may be often obseued on a new or rebuilt machine rather than on a machine that has been operating for several months or years. Rubbing in the turbine has been classified into two modes by the operating conditions: 1) start up or shut down, 2) steady state. At start up or shut down operation, rubbing produces synchronous whirl vibration, which are caused by thermal bow of the shaft due to localized heating on the shaft surface. While subsynchronous whirl vibration is caused by partial rubbing during the steady state operation. In this paper, the two case studies of troubleshooting for excessive vibration caused by rubbing in the actual steam turbines are investigated.

  • PDF

면내/면외변형을 고려한 이송되는 박막의 진동해석 (Vibration Analysis of an Axially Moving Membrane with In-plane/Out-of-plane Deformations)

  • 신창호;정진태
    • 한국소음진동공학회논문집
    • /
    • 제14권9호
    • /
    • pp.910-918
    • /
    • 2004
  • The vibration analysis of an axially moving membrane are investigated when the membrane has the two sets of in-plane boundary conditions, which are free and fixed constraints in the lateral direction. Since the in-plane stiffness is much higher than the out-of-plane stiffness, it is assumed during deriving the equations of motion that the in-plane motion is in a steady state. Under this assumption, the equation of out-of-plane motion is derived, which is a linear partial differential equation influenced by the in-plane stress distributions. After discretizing the equation by using the Galerkin method, the natural frequencies and mode shapes are computed. In particular, we put a focus on analyzing the effects of the in-plane boundary conditions on the natural frequencies and mode shapes of the moving membrane.