• Title/Summary/Keyword: Steady state response

Search Result 658, Processing Time 0.024 seconds

A Study On the Frequency Characteristic of the HBPSRC (하프 브릿지 병렬-직렬 공진형 컨버터의 주파수 특성에 관한 연구)

  • 차인수;박해암
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.51-55
    • /
    • 1992
  • By using the state plane approach, the steady state analysis and design of a half bridge parallel-series (LLC-type) resonant converter (HBPSRC) operating in the continous conduction made is presented. The state-plane diagram representation of the converter response gives good insight into the converter operation. Based on this analysis, a set of steady state characteristic waves for HBPSRC is presented. A simple design procedure is given and design example for a 100watts, 30KHz HBPSRC is presented for illustrative purposes.

  • PDF

PD+I-type fuzzy controller using Simplified Indirect Inference Method

  • Kim, Ji-Hoon;Jeon, Hae-Jin;Chun, Kyung-Han;Park, Bong-Yeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.179.5-179
    • /
    • 2001
  • Generally, while PD-type fuzzy controller has good performance in transient period, it has uniform steady state error of response. To improve limitations of PD-type fuzzy controller, we propose a new fuzzy controller to improve the performance of transient response and to eliminate the steady state error of response. In this paper, PD-type fuzzy controller is used a simplified indirect inference method(SIIM). When the SIIM is applied, the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. The outputs of this controller are the output calculated by PD-type fuzzy controller and the accumulated error scaling factor. Here, the accumulated error scaling factor is adjusted by fuzzy rule according to the system state variables. To show the usefulness of the proposed controller, it is applied to 0-type 2nd-order linear system.

  • PDF

Design and Performance Analysis of a Noncoherent Code Tracking Loop for 3GPP MODEM (3GPP 모뎀용 동기 추적회로의 설계 및 성능 분석)

  • 양연실;박형래
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.12A
    • /
    • pp.983-990
    • /
    • 2003
  • In this paper, a noncoherent code tracking loop is designed for 3GPP MODEM and its performance is analyzed in terms of steady-state jitter variance and transient response characteristics. An analytical closed-form formula for steady-state jitter variance is Int derived for AWGN environments as a general function of a pulse-shaping filter, timing offset, signal-to-interference ratio, and loop bandwidth, together with the analysis on the transient response characteristic of a tracking loop. Based on the analysis, the code tracking loop with variable loop bandwidth that is efficient for full digital H/W implementation is designed and its performance is compared with that of the code tracking loop with fixed loop bandwidth, along with the verification by computer simulations.

Steady-State and Transient Response Analysis of DSSC Based on Electron Diffusion Coefficient and Chemical Capacitance

  • J. C. Gallegos;J. Manriquez;R. Rodriguez;S. Vargas;D. Rangel
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.276-290
    • /
    • 2024
  • A study of the transition from transitory state to steady state in DSSCs based on natural dyes is presented; cochineal was used as dye and Li+, Na+, and K+ were the ions added to the electrolyte. The photocurrent profiles were obtained as a function of time. Several DSSCs were prepared with different cations and their role and the transitory-to-steady transition was determined. A novel hybrid charge carrier source model based on the Heaviside function H(t) and the Lambert-Beer law, was developed and applied to analysis of the transient response of the output photocurrent. Additionally, the maximum effective light absorption coefficient α and the electronic extraction rate κ for each ion were determined: ${\alpha}_{Li^+,Na^+,K^+}\,=\,(0.486,\,0.00085,\,0.1126)\,cm^{-1}$, and also the electronic extraction rate ${\kappa}^{Li^+,Na^+,K^+}_{ext.}\,=\,(1410,\,19.07,\,19.69)\,cm\,s^{-1}$. The impedance model using Fick's second law was developed for carrier recombination to characterize the photocurrent.

Redesigning Taguchi Sensor

  • Hossein-Babaei Faramarz;Park, Won-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.1
    • /
    • pp.11-15
    • /
    • 2005
  • The configuration of the main components and the physical structure of the Taguchi sensor, the first ceramic gas sensor mass produced, has remained virtually unaltered since its appearance 40 years ago. This device owns an excellent combination of the quality factors but is non-selective. The research efforts carried out to enhance the selectivity in this resistive gas sensor are briefly reviewed. A novel design, Capillary-attached Gas Sensor (CGS), is introduced, which employs the same ceramic components used for the fabrication of a classical Taguchi sensor but in altered geometries. CGS presents remarkable advantages from the view point of selectivity over the original design. While the steady state response of a CGS has the same significance as that of the Taguchi sensor, its transient response presents valuable diagnostic information. Fabrication and test of a prototype CGS is reported.

Hydraulic Shock Load Response of Activated Sludge Process (활성슬러지공정의 수리학적 충격부하 반응)

  • Whang, Gye Dae;Kim, Min Ho;Ko, Sae;Cho, Chul Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.3
    • /
    • pp.67-78
    • /
    • 1997
  • The objective of study was to examine to transient response of hydraulic shock loading in activated sludge process for treatment of municipal sewage. The general experiment approach was to operate the system under steady-state(pre-shock), then to apply step changes during 24hours in fourfold hydraulic shock loading at the same organic loading. Performance was assessed in both the transient state and the new steady-state(post-shock). Three bench scale activated sludge reactors were operated to investigate the effect of fourfold hydraulic shock loading on TSS and COD removal efficiency. In activated sludge reactors operated with 13hours and 7hours of HRT, effluent quality of all reactors was not changed for few effects, and also showed no foaming and no sludge bulking. Those results are the same as sludge withdrawn reactors. The effect of fourfold hydraulic shock loading on the activated sludge reactors operated with 3hours of HRT was most severe. The effluent quality was deteriorated significantly and generate foaming in reactors. Less than 24hours after the fourfold shock loading applied, the activated sludge system seemed to attain a new steady-state condition as show by effluent.

  • PDF

Analysis of Response of a Wind Farm During Grid/inter-tie Fault Conditions (그리드/연계선 사고 시 풍력발전단지의 응동 분석)

  • Lee, Hye-Won;Kim, Yeon-Hee;Zheng, Tai-Ying;Lee, Sang-Cheol;Kang, Yong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1128-1133
    • /
    • 2011
  • In a wind farm, a large number of small wind turbine generators (WTGs) operate whilst a small number of a large generator do in a conventional power plant. To maintain high quality and reliability of electrical energy, a wind farm should have equal performance to a thermal power plant in the transient state as well as in the steady state. The wind farm shows similar performance to the conventional power plant in the steady state due to the advanced control technologies. However, it shows quite different characteristics during fault conditions in a grid, which gives significant effects on the operation of a wind farm and the power system stability. This paper presents an analysis of response of a wind farm during grid fault conditions. During fault conditions, each WTG might produce different frequency components in the voltage. The different frequency components result in the non-fundamental frequencies in the voltage and the current of a wind farm, which is called by "beats". This phenomenon requires considerable changes of control technologies of a WTG to improve the characteristics in the transient state such as a fault ride-through requirement of a wind farm. Moreover, it may cause difficulties in protection relays of a wind farm. This paper analyzes the response of a wind farm for various fault conditions using a PSCAD/EMTDC simulator.

Fuzzy control system design by data clustering in the input-output subspaces (입출력 부공간에서의 데이터 클러스터링에 의한 퍼지제어 시스템 설계)

  • 김민수;공성곤
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.12
    • /
    • pp.30-40
    • /
    • 1997
  • This paper presents a design method of fuzzy control systems by clustering the data in the subspace of the input-output produyct space. In the case of servo control, most input-outputdata are concentrated in thye steady-state region, and the the clustering will result in only steady-state fuzzy rules. To overcome this problem, we divide the input-output product space into some subspaces according to the state of input variables. The fuzzy control system designed by the subspace clustering showed good transient response and smaller steady-state error, which is comparable with the reference fuzzy system.

  • PDF

A remedy for a family of dissipative, non-iterative structure-dependent integration methods

  • Chang, Shuenn-Yih;Wu, Tsui-Huang
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.45-53
    • /
    • 2018
  • A family of the structure-dependent methods seems very promising for time integration since it can simultaneously have desired numerical properties, such as unconditional stability, second-order accuracy, explicit formulation and numerical dissipation. However, an unusual overshoot, which is essentially different from that found by Goudreau and Taylor in the transient response, has been experienced in the steady-state response of a high frequency mode. The root cause of this unusual overshoot is analytically explored and then a remedy is successfully developed to eliminate it. As a result, an improved formulation of this family method can be achieved.

Sine sweep effect on specimen modal parameters characterization

  • Roy, Nicolas;Violin, Maxime;Cavro, Etienne
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.2
    • /
    • pp.187-204
    • /
    • 2018
  • The sine sweep base excitation test campaign is a major milestone in the process of mechanical qualification of space structures. The objectives of these vibration tests are to qualify the specimen with respect to the dynamic environment induced by the launcher and to demonstrate that the spacecraft FE model is sufficiently well correlated with the test specimen. Dynamic qualification constraints lead to performing base excitation sine tests using a sine sweep over a prescribed frequency range such that at each frequency the response levels at all accelerometers, load cells and strain gages is the same as the steady state response. However, in practice steady state conditions are not always satisfied. If the sweep rate is too high the response levels will be affected by the presence of transients which in turn will have a direct effect on the estimation of modal parameters. A study funded by ESA and AIRBUS D&S was recently carried out in order to investigate the influence of sine sweep rates in actual test conditions. This paper presents the results of this study along with recommendations concerning the choice of methods.