DOI QR코드

DOI QR Code

Redesigning Taguchi Sensor

  • Published : 2005.01.01

Abstract

The configuration of the main components and the physical structure of the Taguchi sensor, the first ceramic gas sensor mass produced, has remained virtually unaltered since its appearance 40 years ago. This device owns an excellent combination of the quality factors but is non-selective. The research efforts carried out to enhance the selectivity in this resistive gas sensor are briefly reviewed. A novel design, Capillary-attached Gas Sensor (CGS), is introduced, which employs the same ceramic components used for the fabrication of a classical Taguchi sensor but in altered geometries. CGS presents remarkable advantages from the view point of selectivity over the original design. While the steady state response of a CGS has the same significance as that of the Taguchi sensor, its transient response presents valuable diagnostic information. Fabrication and test of a prototype CGS is reported.

Keywords

References

  1. W. H. Brattain and J. Bardeen, 'Surface Properties of Germanium,' Bell Syst. Tech. J., 32 1 (1953) https://doi.org/10.1002/j.1538-7305.1953.tb01420.x
  2. T. Seiyama, A. Kato, K. Fujushi, and M. Nagattani, 'A New Detector for Gaseous Components Using Semiconductor Thin Film,' Anal. Chem., 34 1502 F (1962) https://doi.org/10.1021/ac60191a001
  3. N. Taguchi, Jap. Patent 45-38200, 1962
  4. J. Ding, T. J. MacAvoy, R. E. Cavicchi, and S. Semanik, 'Surface State Trapping Models for $SnO_2$-Based Microhotplate Sensors,' Sensors and Actuators B, 77 597-613 (2001) https://doi.org/10.1016/S0925-4005(01)00765-1
  5. F. Hossein-Babaei and M. Orvatinia, 'Gas Diagnosis Based on Selective Diffusion Retardation in an Air Filled Capillary,' Sensors and Actuators B, 96 298-303 (2003) https://doi.org/10.1016/S0925-4005(03)00546-X
  6. F. Hossein-Babaei and M. Orvatinia, 'A Novel Approach to Hydrogen Sensing,' IEEE Sensors J., 4 [6] 802-06 (2004) https://doi.org/10.1109/JSEN.2004.837499
  7. F. Hossein-Babaei, M. Hemmati, and M. Dehmobed, 'Gas Diagnosis by a Quantitative Assessment of the Transient Response of a Capillary-Attached Gas Sensor,' Sensors and Actuators B, accepted for publication (2004)
  8. C. O. Park and S. A. Akbar, 'Ceramics for Chemical Sensing,' J. Mat. Soc., 38 4611-37 (2003) https://doi.org/10.1023/A:1027402430153
  9. G. Sakai, N. Matsunaga, K. Shimanoe, and N. Yamazoe, 'Theory of Gas Diffusion Controlled Sensitivity for Thin Film Semiconductor Gas Sensor,' Sensors and Actuators B, 80 125-31 (2002)
  10. F. Hossein-Babaei and M. Orvatinia, ''Thickness Dependence of Sensitivity in Thin Film Tin Oxide Gas Sensors Deposited by Vapor Pyrolysis,' Int. J. Eng., 16 33-40 (2003)
  11. M. Schweizer-Berberich, J. G. Zheng, U. Weimar, W. Gopel, N. Barsan, E. Pentia, and A. Tomescu, 'The Effect of Pt and Pd Suface Doping on the Response of Nanocrystalline Tin Dioxide Gas Sensors to CO,' Sensors and Actuators B, 31 71-5 (1996) https://doi.org/10.1016/0925-4005(96)80018-9
  12. E. W. Williams and A. G. Keeling, 'Thick Film Tin Oxide Sensors for Detecting Carbon Monoxide at Room Temperature,' J. Mater. Soc.: Materials in Electronics, 9 51-4 (1988)
  13. D. H. Kim, S. H. Lee, and K. H. Kim, 'Comparison of CO Gas Sensing Characteristics between Mono- and Multi-Layer Pt/$SnO_2$ Thin Films,' Sensors and Actuators B, 77 427-31 (2001) https://doi.org/10.1016/S0925-4005(01)00749-3
  14. M. Sauvan and C. Pijolot, 'Selectivity Improvement of $SnO_2$ Films by Superficial Metallic Films,' Sensors and Actuators B, 58 295-301 (1999) https://doi.org/10.1016/S0925-4005(99)00147-1
  15. O. V. Safonova, M. N. Ramyantseva, L. I. Ryabova, M. Labeau, G. Delabouglise, and A. M. Gaskov, 'Effect of Combined Pd and Cu Doping on Microstructure, Electrical and Gas Sensor Properties of Nanocrystalline Tin Dioxide,' J. Mter. Soc. and Eng. B, 85 43-9 (2001) https://doi.org/10.1016/S0921-5107(01)00640-7
  16. A. R. Phania, S. Manoamab, and V. J. Raob, 'The Nature of Surface Behavior of Tin Oxide Doped Sensors: X-Ray Photoelectron Studies Before and After Exposure to Liquid Petroleum,' J. Phys. Chem. Solids, 61 985-93 (2000) https://doi.org/10.1016/S0022-3697(99)00215-2
  17. G. Zanng and M. Liu, 'Effect of Particle Size and Dopant on Properties of $SnO_2$-Based Gas Sensor,' Sensors and Actuators B, 69 144-42 (2000) https://doi.org/10.1016/S0925-4005(00)00528-1
  18. T. Pagnier, M. Boulova, A. Galeri, A. Gaskov, and G. Lucaseau, 'Reactivity of $SnO_2$-CuO Nanocrystalline Materials with $H_2S$,' Sensors and Actuators B, 71 134-39 (2000) https://doi.org/10.1016/S0925-4005(00)00598-0
  19. K. Fuki and A. Katsuki, 'Improvement of Humidity Dependence in Gas Sensor Based on $SnO_2$,' Sensors and Actuators B, 65 316-18 (1998)
  20. S. D. Choi and D. D. Lee, '$CH_4$ Sensing Characteristics of K, Ca, Mg Impregnated $SnO_2$ Sensor,' Sensors and Actuators B, 77 335-38 (2001) https://doi.org/10.1016/S0925-4005(01)00727-4
  21. M. Ivanovskaya, P. Bogdanov, G. Faglia, P. Nelli, G. Sberveglieri, and A. Taroni, 'On the Role of Catalytic Additives in Gas Sensitivity of $SnO_2-Mo$ Based Thin Film Sensors,' Sensors and Actuators B, 77 268-74 (2001) https://doi.org/10.1016/S0925-4005(01)00709-2
  22. C. H. Kwon, D. H. Yun, H. K. Hong, S. R. Kim, K. Lee, H. Y. Lim, and K. H. Yoon, 'Multi-Layered Thick-Film Gas Sensor Array for Selective Sensing by Catalytic Filtering Technology,' Sensors and Actuators B, 65 327-30 (2000) https://doi.org/10.1016/S0925-4005(99)00426-8
  23. F. Hossein-Babaei and M. Orvatinia, 'Analysis of Thickness Dependence of the Sensitivity in Thin Film Resistive Gas Sensors,' Sensors and Actuators B, 89 256-61 (2003) https://doi.org/10.1016/S0925-4005(02)00472-0
  24. F. Hossein-Babaei and F. Taghibakhsh, 'Electrophoretically Deposited Zinc Oxide Thick-Film Gas Sensors,' Electronics Lett., 36 1815-16 (2001) https://doi.org/10.1049/el:20001258