• Title/Summary/Keyword: Steady state following

Search Result 141, Processing Time 0.022 seconds

Administration Route Dependency of Distribution of Distribution pf PEGylated Recombinant Human Tumor Necrosis Factor Binding Protein (rhTNFbp-PEG20K dimer) following i.v. and s.c. Injection

  • Kim, Dong-Chool;Duane C. Bloedow
    • Archives of Pharmacal Research
    • /
    • v.17 no.5
    • /
    • pp.381-382
    • /
    • 1994
  • Administration route dependency on the distribution of PEGylated recombinant human turor necrosis factor binding protein (rhTNFbp-PEG20K dimer) was observed following a subcutaneous (sc) and an intravenous (iv) administrationin rats. ehTNFbp-PEG20K dimer is composed of two rhTNGbp molecules (molecular weight 18, 278 daltons each) joined by polyethylene glycol 2000(PEG30K). The steady state distribution volume of rhTNFbp-PEG20K was 55 m/kg and 359 ml/kg following the i.v. and s.c. administrations, respectively. These results suggest that the distribution of ehTNFbp-PEG20K is limited within the cpillary space after i.v. administration, while rhTNFbp-PEG20K can distribute into a space (35.9% of body weight) which is between extracellylar space and total body water. A lymphatic absorption may paly a role in the distribution of rhTNFbp-PEF20K dimer following the sc administration. The present study suggests that the administration route of a lartge protein molecule should be determined depedning upon target sites.

  • PDF

Efficiency Factors of Singlet Oxygen Generation from Core-Modified Expanded Porphyric : Tetrathiarubyrin in Ethanol

  • Ha, Jeong Hyeon;Jeong, Guk Yeong;Kim, Min Seon;Lee, Yang Hun;Sin, Gu;Kim, Yong Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.63-67
    • /
    • 2001
  • The photophysical properties and the singlet oxygen generation efficiency of tetrathiarubyrin have been investigated to elucidate the possibility of its use as a photodynamic therapy (PDT) photosensitizer by steady-state and time-resolved spectroscopic methods. The observed photophysical properties were affected by various molecular aspects, such as extended ${\pi}conjugation$, structural distortion, and internal heavy atom. The steady-state electronic absorption spectrum was red-shifted due to the extended $\pi-conjugation$, and the spin orbital coupling was enhanced by the structural distortion and the internal heavy atom effect. As a result of the enhanced spin orbital coupling, the triplet quantum yield increased to 0.90 $\pm$ 0.10 and the triplet state lifetime was shortened to 7.0 $\pm$ 1.2 ${\mu}s$. Since the triplet state decays at a relatively faster rate, the efficiency of the oxygen quenching of the triplet state decreases. The singlet oxygen quantum yield was estimated to be 0.52 $\pm$ 0.02, which is somewhat lower than expected. On the other hand, the efficiency of singlet oxygen generation during the oxygen quenching of triplet state, $f{\Delta}^T$, is near unity. Such high efficiency of singlet oxygen generation can be explained by the following two possible factors: The hydrogen bonding of ethanol which impedes the deactivation pathway of the charge transfer complex with oxygen to the ground state, the less probability of the aggregation formation.

A Study on Multi Fault Detection for Turbo Shaft Engine Components of UAV Using Neural Network Algorithms

  • Kong, Chang-Duk;Ki, Ja-Young;Kho, Seong-Hee;Lee, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.187-194
    • /
    • 2008
  • Because the types and severities of most engine faults are various and complex, it is not easy that the conventional model based fault detection approach like the GPA(Gas Path Analysis) method can monitor all engine fault conditions. Therefore this study proposed newly a diagnostic algorithm for isolating and diagnosing effectively the faulted components of the smart UAV propulsion system, which has been developed by KARI(Korea Aerospace Research Institute), using the fuzzy logic and the neural network algorithms. A precise performance model should be needed to perform the model-based diagnostics. The based engine performance model was developed using SIMULINK. For the work and mass flow matching between components of the steady-state simulation, the state-flow library was applied. The proposed steady-state performance model can simulate off-design point performance at various flight conditions and part loads, and in order to evaluate the steady-state performance model their simulation results were compared with manufacturer's performance deck data. According to comparison results, it was confirm that the steady-state model well agreed with the deck data within 3% in all flight envelop. The diagnosis procedure of the proposed diagnostic system has the following steps. Firstly after obtaining database of fault patterns through performance simulation, then secondly the diagnostic system was trained by the FFBP networks. Thirdly after analyzing the trend of the measuring parameters due to fault patterns, then fourthly faulted components were isolated using the fuzzy logic. Finally magnitudes of the detected faults were obtained by the trained neural networks. Because the detected faults have almost same as degradation values of the implanted fault pattern, it was confirmed that the proposed diagnostic system can detect well the engine faults.

  • PDF

An FPGA-Based Modified Adaptive PID Controller for DC/DC Buck Converters

  • Lv, Ling;Chang, Changyuan;Zhou, Zhiqi;Yuan, Yubo
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.346-355
    • /
    • 2015
  • On the basis of the conventional PID control algorithm, a modified adaptive PID (MA-PID) control algorithm is presented to improve the steady-state and dynamic performance of closed-loop systems. The proposed method has a straightforward structure without excessively increasing the complexity and cost. It can adaptively adjust the values of the control parameters ($K_p$, $K_i$ and $K_d$) by following a new control law. Simulation results show that the line transient response of the MA-PID is better than that of the adaptive digital PID because the differential coefficient $K_d$ is introduced to changes. In addition, experimental results based on a FPGA indicate that the MA-PID control algorithm reduces the recovery time by 62.5% in response to a 1V line transient, 50% in response to a 500mA load transient, and 23.6% in response to a steady-state deviation, when compared with the conventional PID control algorithm.

Papers : Improvement of Tracking Performance for Re - Entry Trajectory via the Disturbance Observer (논문 : 외란 관측기를 이용한 대기권 재진입 궤적 추종성능 향상)

  • Lee,Dae-U;Jo,Gyeom-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.75-81
    • /
    • 2002
  • In the re-entry comtrol system, errors apt to induce because the time deriviative of drag acceleration is analytically estimated. Still more, the difficulty of estimation of th exact drag coefficient in hypersonic velocity and the non-reality of the scale height cause a steady-state drag errer. In the Space-Shuttle, a steady-state drag error is reduced by the addition of the integral term of drag acceleation error into the control system. This method, however, induces a difficulties in respect to the modern controller composition due to the multi-poles in a closed-loop system. Thus, this paper proposes the additional method of the disturbance observer. This reduces the steady-state drag error according to the following by the analytic calculation, and then creates the new drag acceleration time derivative using the estimated error. The performance of the re-entry control system is verified about 32 refernce trajectories.

A Study on Hybrid(Position/Force) Control of Robot Using Time Delay Control (시간지연제어기법을 이용한 로봇의 혼합(위치/힘) 제어에 관한 연구)

  • 장평훈;박병석;박주이
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2554-2566
    • /
    • 1994
  • Robot position/force control has been a difficult task owing to the interaction between a robot and an environment with a rather high stiffness. In addition to the dynamic instability, the interaction causes the following problem : 1) chattering at steady-state, 2) dynamic coupling effect of robot, and 3) performance degradation due to a titled environment. To solve the problem, the Time Delay Control(TDC), which has been known to be quiet robust to plant uncertainties and disturbances, has been applied. In conjunction to TDC, the following three ideas were also used : 1) To reduce the amplitude of the chattering at the steady state, a novel scheme was adopted to enhance the resolution type solution of A/D conversion for the force sensor. 2) To reduce the dynamic coupling, a trajectory type position command was tried on a comparative basis to the step command, as well as a more accurate mass matrix was used instead of the constant mass matrix. 3) And finally to improve the performance in the tilted environment, force derivatives instead of position derivatives were used in the TDC law. Computer simulations and experiments resulted in obvious improvements on the quality of the hybrid control, thereby clearly demonstrating the effectiveness of TDC with the proposed ideas.

Design of optimal control system of nuclear reactor for direct digital control (원자로의 직접 디지탈 제어를 위한 최적 제어계통의 설계)

  • 천희영;박귀태;이기상
    • 전기의세계
    • /
    • v.30 no.8
    • /
    • pp.509-516
    • /
    • 1981
  • The optimal control theory is applied to the design of a digital control system for a nuclear reactor. A linear dynamic model obtained at 85% of rated power and a quadratic performance index are used. A minimal order observer used in cascade with the feedback controller is suggested as a state estimator. The total reactor power control is studied in the range of 80% to 100% of rated power, with the steady state and load-following control. The control algorithm considered is suitable for implementation in direct digital control.

  • PDF

Self-Excited Buck-Boost DC-DC Converter (자려식 승강압형 DC-DC 컨버터)

  • Lee, Seong-Gil;An, Tae-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.663-669
    • /
    • 1999
  • This paper presents new self excited DC-DC converters such as Buck-boost type, Buck type and also non-inverting Buck-boost type. The proposed converters has the following advantages: simple topology, small number of circuit components, easy control method. Therefore, these converters are suitable for the portable appliances with battery source. It is especially suited for low power DC-DC conversion applications where non isolation output power is usually required. The steady state characteristics of proposed self exciting Buck-boost DC-DC converter are analysis and the result shows good agreement with experimental value. Furthermore the experimental results for 50W class self oscillating Buck-boost DC-DC converter have been obtained, which demonstrate the high efficiency and good performance.

  • PDF

A Study for ATC Computation Using an Energy Function Method (에너지함수법을 이용한 ATC 계산에 관한 연구)

  • Kim, Yang-Il;Jeong, Sung-Won;Gim, Jae-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.465-466
    • /
    • 2007
  • Available transfer capability(ATC) quantifies the viable increase in real power transfer from one point to another in a power system. ATC calculation has predominantly focussed on steady-state viability. In many power systems, point-to-point transfer is not restricted by steady-state limits, but by undesirable dynamic behavior following large disturbance. In this paper, an energy function method for transient stability ATC computation is proposed, which utilizes a between the potential energy and energy function.

  • PDF

In Vivo Prediction and Biopharmaceutical Evaluation of Nicotine Transdermal Patch (생체내 예측 및 흰쥐를 이용한 니코틴 패취의 약물동력학적 평가)

  • Lee, Woo-Young;Baek, Seung-Hee;Park, Eun-Seok;Chi, Sang-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.4
    • /
    • pp.273-278
    • /
    • 2005
  • Nicotine transdermal therapeutic systems $(TTS_S)$ have been regarded as an effective mean to aid smoking cessation. However, most of nicotine $TTS_S$ in the market have some problems such as unpleasant side effects and skin irritation due to the excess amount of the drug permeated and the properties of the additives employed. In order to solve these problems, new nicotine $TTS_S$ were formulated using biocompatible additives. The optimized formula of the drug layer consisted of nicotine, propylene glycol and poloxamer 188 at the ratio of 1.2: 17.0: 2.0. The drug layer had the sickness of $1,250\;{\mu}m$, the pH of 8.12. The skin permeation rate of nicotine from optimized nicotine patch (NP) was $21.5\;{\mu}g/cm^2/h$. Transdermal administration of nicotine patch has been carried out for the determination of pharmacokinetic parameters in rats. Steady-state plasma concentration of nicotine following transdermal application of NP (area of patch = $15\;cm^2$) on the dorsal skin of rats was 143.2 ng/ml and AUC for 24 hrs was 3,022 ng h/ml. In case of $EXODUS^{\circledR}$ and Nicotinell $TTS^{\circledR}$, the steady-state plasma concentration of nicotine and ACU for 24 hrs were 428.9 ng/ml, $9,121\;ng{\cdot}hr/ml$ and 155.3 ng/ml, $3,152\;ng{\cdot}h/ml$, respectively. NP showed the experimental plasma nicotine concentration profile was very similar to the simulated one and had an appropriate skin permeation rate and a steady-state concentration of nicotine, which can show therapeutic blood levels of the drug for 24 hrs without severe side effects.