• 제목/요약/키워드: Steady prediction method

검색결과 124건 처리시간 0.029초

축대칭 발사체의 감쇠계수 계산을 위한 정상 해법 (A Steady Method of Damping Coefficient Prediction for Axisymmetric Projectiles)

  • 박수형;권장혁;유영훈
    • 한국항공우주학회지
    • /
    • 제34권11호
    • /
    • pp.1-8
    • /
    • 2006
  • 축대칭 발사체의 동적 감쇠계수를 계산하기 위한 정상 예측 방법을 제안한다. 관성좌표계에서 영스핀 코닝 운동을 사용한 정상 해법을 적용하기 위해서는 점성유동 해석이 필수적으로 이루어져야 한다. 제안된 방법을 회전발사체에 적용하여 피칭모멘트와 피치감쇠 모멘트계수를 계산하였다. 결과는 포물형 Navier-Stokes 예측 결과, 실험결과, 비정상 예측 결과와 잘 일치함을 확인하였다. 또한, secant-ogive-cylinder 계열 발사체에 대한 정적 및 동적 계수의 축방향 생성과정을 살펴봄으로써 후방동체의 형상으로 인한 유동 변화가 동적 안정성에 미치는 영향을 고찰하였다.

정상 운동을 이용한 발사체의 동적 감쇠계수 계산 (Computation of Dynamic Damping Coefficients for Projectiles using Steady Motions)

  • 박수형;권장혁
    • 한국항공우주학회지
    • /
    • 제31권8호
    • /
    • pp.19-26
    • /
    • 2003
  • 비정상 Euler 방정식 틀에서 동안정 미계수의 정상 예측 방법을 제안하였다. 새로운 접근방법은 비정상 지배방정식을 수정하지 않고 정상 예측방법을 적용하도록 해 준다. 제안된 방법을 통해 lunar 코닝운동 및 나선운동을 사용하여 피치감쇠 계수 합과 개별 값을 계산하였다. ANSR 형상과 Basic Finner 형상에 대한 계산결과는 PNS 계산결과, 실험치, 그리고 비정상적 예측방법을 사용한 결과와 잘 일치하고, 직교좌표계에서 정상적 예측 방법이 피치감쇠 계수의 예측에 성공적으로 적용될 수 있음을 보여준다.

해양 구조물의 철근부식 예측기법 개발에 관한 연구 (A Study on the Development of Corrosion Prediction System of Reinforcing Bars in Sea-shore Structure)

  • 박승범;김도겸
    • 콘크리트학회논문집
    • /
    • 제11권6호
    • /
    • pp.89-100
    • /
    • 1999
  • Service life of concrete structures that are exposed to the environmental attack is largely influenced by the corrosion of reinforcing bare due to the chloride contamination. Chloride ions penetrate continuously into concrete from the environment, and chloride diffusion velocity is governed by a mechanical steady stage. In this study, a method is developed to predict corrosion initiation of reinforcing bars in the sea-shore structures, based on governing equations that take into account the diffusing of chloride ions and a mechanical steady state. As a result of this study, Corrosion Prediction System (CPS) is developed, and it can be used to determine an optimal time for repair and rehabilitation actions need to be taken. Futhermore, CPS assists the concrete mixing structures by predicting of chloride concentrations in concrete mixture, exposed to salt concentrations and service environment.

비관성 좌표계에서의 정상해석을 통한 동 안전 미계수 예측 기법 연구 (A STUDY OF PREDICTION METHOD FOR DYNAMIC STABILITY DERIVATIVE USING STEADY STATE SIMULATION IN NON-INERTIAL COORDINATE)

  • 이형로;이승수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.428-433
    • /
    • 2011
  • In this paper, a prediction method for dynamic stability derivatives is studied using steady state simulations in rotational coordinates. The simulations require the extension of a standard CFD formulations based on inertial coordinate. A new CFD code based on the method are developed. Flows induced by steady circular motions of airfoils with a constant pitch rate are simulated with the code. From the numerical simulations, the pitch rate derivatives are obtained at various Mach numbers, and the results are compared with other numerical results. The numerical simulations show that the new code are capable of predicting dynamic stability derivatives.

  • PDF

정상 간섭 익렬 계산 모델을 용한 1단 축류 송풍기의 성능 예측 (Performance Prediction of the 1-Stags Axial Fan using Steady Coupled Blade Row Calculation Model)

  • 손상범;주원구;조강래
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.49-54
    • /
    • 1998
  • The flow inside an axial turbomachinery with multi-stage can be characterized as unsteady phenomena. In order to predict accurately these complex unsteady flow patterns including rotor-stator interaction effects, enormous computer resources are required. So it is not compatible in preliminary design process. In this study, steady coupled blade row flow with rotor-stator interaction solver is developed using interrow mixing model and used to predict the performance of the axial fan. To verify the computational method, the calculations are compared with experimental results and show satisfactory agreement with them. The interaction effects on the performance of the axial fan have also been studied by comparing the results of steady coupled blade row and steady single blade row flow calculation.

  • PDF

열연 공정 정상상태 판 프로파일 예측 - PartⅡ: 수식 모델 개발 (Prediction of Steady-state Strip Profile during Hot Rolling - PartⅡ: Development of a Mathematical Model)

  • 이재상;황상무
    • 소성∙가공
    • /
    • 제25권1호
    • /
    • pp.61-66
    • /
    • 2016
  • In the current study, we present a new model for the prediction of the strip profile and the residual stresses. This new approach is an analytical model that predicts the residual stresses from the effect of post-deformation. Since the residual stress cannot exceed the yield strength of the material, post-yielding may possibly occur in the post-deformation zone prior to the strip reaching the steady-state zone. The prediction accuracy of the proposed model is examined through comparison with the predictions from 3-D finite element (FE) simulations.

열연 공정 정상상태 판 프로파일 예측 - PartⅠ: 유한요소 해석 (Prediction of Steady-state Strip Profile during Hot Rolling - PartⅠ: FEM Analysis)

  • 이재상;황상무
    • 소성∙가공
    • /
    • 제25권1호
    • /
    • pp.56-60
    • /
    • 2016
  • Precise prediction and control of the strip profile is crucial for automatic process set-up and operation of a hot strip mill. In the current study, we present the effect of post-deformation on the steady-state strip profile. The process was simulated by a 3-D elastic-plastic finite element (FE) analysis. Comparisons are made between the strip profile measured at the roll exit and the steady-state strip profile. The results raised an issue with regard to the importance of taking into account the effect of post-deformation.

삼차원 정상/비정상 비압축성 유동해석을 위한 비정렬 혼합격자계 기반의 유동해석 코드 개발 (DEVELOPMENT OF AN UNSTRUCTURED HYBRID MESH FLOW SOLVER FOR 3-D STEADY/UNSTEADY INCOMPRESSIBLE FLOW SIMULATIONS)

  • 정문승;권오준
    • 한국전산유체공학회지
    • /
    • 제13권2호
    • /
    • pp.27-41
    • /
    • 2008
  • An unstructured hybrid mesh flow solver has been developed for the simulation of three-dimensional steady and unsteady incompressible flow fields. The incompressible Navier-Stokes equations with an artificial compressibility method were discretized by using a node-based finite-volume method. For the unsteady time-accurate computation, a dual-time stepping method was adopted to satisfy a divergence-free flow field at each physical time step. An implicit time integration method with local time stepping was implemented to accelerate the convergence in the pseudo-time sub-iteration procedure. The one-equation Spalart-Allmaras turbulence model has been adopted to solve high-Reynolds number flow fields. The flow solver was parallelized to minimize the CPU time and to overcome the computational overhead. This method has been applied to calculate steady and unsteady flow fields around submarine configurations and a 3-D infinite cylinder. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of steady and unsteady incompressible flow fields.

구조-음향계의 정상상태 응답예측을 위한 유한요소법과 경계요소법의 응용 (Applicatio of Finite Element and Boundary Element Methods to Predict Steady-State Response of a Structure-Acoustic-Cavity System)

  • 이장명
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1383-1391
    • /
    • 1996
  • The steady-state response for a coupled structure-acoustic-cavity systme has been investigated by numerical technique using a directly coupled finite element method(FEM) and Boundary Element Method(BEM) model. The Laplace tranformed matrix equations for the structure and the acoustic cavity are coupled directly satisfying the necessary equilibrium and compatibility conditions. The coupled FEM-BEM code is verified by comparing its prediction for an example with known analytical, numerical and experimental results. The example involves a coupled structure-acoustic-cavity system which is a box-type cavity with one end as experimentally excited pinned-pinned plate.

단순 FLC의 정상상태오차 해석 (Analysis of Steady State Error on Simple FLC)

  • 이경웅;최한수
    • 제어로봇시스템학회논문지
    • /
    • 제17권9호
    • /
    • pp.897-901
    • /
    • 2011
  • This paper presents a TS (Takagi-Sugeno) type FLC (Fuzzy Logic Controller) with only 3 rules. The choice of parameters of FLC is very difficult job on design FLC controller. Therefore, the choice of appropriate linguistic variable is an important part of the design of fuzzy controller. However, since fuzzy controller is nonlinear, it is difficult to analyze mathematically the affection of the linguistic variable. So this choice is depend on the expert's experience and trial and error method. In the design of the system, we use a variety of response characteristics like stability, rising time, overshoot, settling time, steady-state error. In particular, it is important for a stable system design to predict the steady-state error because the system's steady-state response of the system is related to the overall quality. In this paper, we propose the method to choose the consequence linear equation's parameter of T-S type FLC in the view of steady-state error. The parameters of consequence linear equations of FLC are tuned according to the system error that is the input of FLC. The full equation of T-S type FLC is presented and using this equation, the relation between output and parameters can represented. As well as the FLC parameters of consequence linear equations affect the stability of the system, it also affects the steady-state error. In this study, The system according to the parameter of consequence linear equations of FLC predict the steady-state error and the method to remove the system's steady-state error is proposed using the prediction error value. The simulation is carried out to determine the usefulness of the proposed method.