• Title/Summary/Keyword: Steady and Transient Analysis

Search Result 385, Processing Time 0.029 seconds

A Study of MMS Computer Program for Dynamic Analysis of Power Plant (발전소 동적 성능분석에 관한 연구)

  • 홍용표;곽병엽;윤명열
    • Journal of Energy Engineering
    • /
    • v.2 no.1
    • /
    • pp.28-37
    • /
    • 1993
  • This paper describes the development of a dynamic model of 1,000 MW$\_$e/ nuclear power plant including its local and integrated control system. The model was constructed using the Modular Modeling System (MMS) developed by the Electric Power Research Institute (EPRI) to provide an efficient, economical and user-friendly computer code for use in the analysis of the dynamic performance of nuclear and fossil power plants in conjunction with the Advanced Continuous Simulation Language (ACSL). Steady state for full load and transient results for turbine power step changes of loft are presented in this paper. The model includes most major components of a 1,000 MW$\_$e/ nuclear power plant and it can readily be modified to simulate a specific power plant. This procedure greatly reduces the analysis and modeling efforts involved in dynamic simulation of power plants and increases confidence in the analysis results.

  • PDF

Thermal Margin Analysis of the Korea Nuclear Unit 1 Reactor Core Consisting of Standard or Optimized Fuel Assemblies (표준 핵연료집합체 또는 최적 핵연료집합체가 장전된 원자력 1호기 원자로심의 열적여유도 분석)

  • Hyun Koon Kim;Ki In Han
    • Nuclear Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.155-160
    • /
    • 1984
  • Analyzed is the thermal margin of the Korea Nuclear Unit 1 (KNU-1) reactor core consisting of either 14 x 14 standard fuel assemblies (SFA) or optimized fuel assemblies (OFA). Employed for the analysis are two different thermal design methods; traditional and statistical thermal design method. Compared to the traditional design thermal method, the statistical thermal design method improves the core thermal margin utilizing best-estimate values for the core operating parameters combining their uncertainties in a statistical manner. Calculations are performed using a steady state and transient thermal-hydraulic analysis computer program, COBRA-IV-i. Calculated results show that the statistical thermal design method significantly improves the thermal margin and satisfies the core thermal design base of the KNU-1 SFA and OFA core. However, the thermal design base can not be met, if the traditional thermal design method is employed for the OFA role analysis.

  • PDF

Analysis of Transient Performance of KALIMER-600 Reactor Pool by Changing the Elevation of Intermediate Heat Exchanger (중간 열교환기 높이 상승에 의한 KALIMER-600 원자로 풀 과도 성능 변화 분석)

  • Han, Ji-Woong;Eoh, Jae-Hyuk;Kim, Seong-O
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.991-998
    • /
    • 2010
  • The effect of increasing the elevation of an IHX (intermediate heat exchanger) on the transient performance of the KALIMER-600 reactor pool during the early phase of a loss of normal heat sink accident was investigated. Three reactors equipped with IHXs that were elevated to different heights were designed, and the thermal-hydraulic analyses were carried out for the steady and transient state by using the COMMIX-1AR/P code. In order to analyze the effects of the elevation of an IHX between reactors, various thermal-hydraulic properties such as mass flow rate, core peak temperature, RmfQ (ratio of mass flow over Q) and initiation time of decay heat removal via DHX (decay heat exchanger) were evaluated. It was found that with an increase in the IHX elevation, the circulation flow rate increases and a steep rise in the core peak temperature under the same coastdown flow condition is prevented without a delay in the initiation of the second stage of cooling. The available coastdown flow range in the reactor could be increased by increasing the elevation of the IHX.

Association Between Vertebrobasilar Insufficiency and Cervicogenic Headache: Hypothetical Approach Towards Etiopathogenesis of Headache

  • Kaur, Aninditya;Rakesh, N.;Reddy, Sujatha S.;Thomas, Nithin;Nagi, Ravleen;Patil, Deepa Jatti
    • Journal of Oral Medicine and Pain
    • /
    • v.45 no.4
    • /
    • pp.97-109
    • /
    • 2020
  • Purpose: Cervicogenic headache (CGH) is pain referred to the head/ face from the structures in vicinity of upper cervical spinal nerves via trigeminocervical pathway. Ponticulus Posticus (PP) and Elongated Styloid Process (ESP) are anatomical structures that cause compression of vasculature present around upper cervical nerve plexus. Recently, computational fluid dynamics (CFD) has shown to play an essential role in identification of these high-pressure zones in the brain. The aim of this research is to study the association of ESP and PP in patients with CGH and to develop a hypothesis by CFD to analyse vertebrobasilar insufficiency as a contributing factor in occurrence of CGH. Methods: Retrospective analysis of 4500 full skull CBCT scans was done for the presence of partial or complete PP and length of Styloid Process (SP). Research was divided into two phases; In first Preliminary Phase, 150 scans that showed the presence of PP and ESP were analysed, and only 134 patients gave consent to fill the questionnaire containing 96 question items pertaining to symptoms associated with CGH. In the second phase, simulation of Vertebral and Carotid Artery was done using Fluent 14.5 Software and by CFD, pressure distribution on arteries was obtained that helped to identify high pressure regions. Results: Both PP and ESP showed a statistically significant association with CGH (p<0.001). By CFD analysis, both steady and transient phases of simulation showed drop in pressure due to constriction of internal carotid and vertebral artery by ESP and PP respectively and were found to decrease the volume of blood reaching the brain, 0.12 /0.13 mL and 0.06 mL respectively. Conclusions: Our analysis proves ESP and PP as contributing factors towards CGH. Hence for proper diagnosis and management of headache disorders, clinicians should have adequate knowledge about these anatomical structures and their resulting clinical symptoms.

A Stduy on Model Development of Boiler Combustion System on Coal Fired Power Plant (석탄화력발전소 보일러 연소계통의 모델개발에 관한 연구)

  • Moon, Chae-Joo;Kim, Yong-Gu;Chung, Hwan-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.65-73
    • /
    • 2004
  • The bolier systems of coal fired power plants are large, non-linear systems with numerous interactions between its component parts. In the analysis of such complex systems, dynamic simulation is recognized as a powerful method of keeping track of the myriad of interactions. The boiler system consists of air/gas system and water/steam system. Due to recent reinforcement of environmental regulation on pollutant discharge and requirements of design validation on properites of boiler, the commercial programs are used for the analysis of boiler system. This paper addressed to the development of model using MMS(Modular Modeling System) developed by EPRI(Electric Power Research Institute) as the simulation tool. The developed model using MMS is tested for the design and local data on boiler combustion system of korea standard coal fired power plant boiler. The simulation results show that the developed model well reproduces responses of the combustion system with less than ${\pm}$5% error under steady state and transient state conditions. The developed model for analysis of the combustion system in this paper is general and applicable to any type of coal fired power plant.

Analysis on electrical and thermal characteristics of MI-SS racetrack coil under conduction cooling and external magnetic field

  • Chae, Yoon Seok;Kim, Ji Hyung;Quach, Huu Luong;Lee, Sung Hoon;Kim, Ho Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.61-69
    • /
    • 2021
  • This paper presents the analysis and experiment results on the electrical and thermal characteristics of metal insulation (MI) REBCO racetrack coil, which was wound with stainless steel (SS) tape between turn-to-turn layers, under rotating magnetic field and conduction cooling system. Although the field windings of superconducting rotating machine are designed to operate on a direct current, they may be subjected to external magnetic field due to the unsynchronized armature windings during electrical or mechanical load fluctuations. The field windings show the voltage and magnetic field fluctuations and the critical current reduction when they are exposed to an external magnetic field. Moreover, the cryogenic cooling conditions are also identified as the factors that affect the electrical and thermal characteristics of the HTS coil because the characteristic resistance changes according to the cryogenic cooling conditions. Therefore, it is necessary to investigate the effect of external magnetic field on the electrical and thermal characteristics of MI-SS racetrack coil for further development reliable HTS field windings of superconducting rotating machine. First, the major components of the experiment test (i.e., HTS racetrack coil construction, armature winding of 75 kW class induction motor, and conduction cooling system) were fabricated and assembled. Then, the MI racetrack coil was performed under liquid nitrogen bath and conduction cooling conditions to estimate the key parameters (i.e., critical current, time constant, and characteristic resistance) for the test coil in the steady state operation. Further, the test coil was charged to the target value under conduction cooling of 35 K then exposed to the rotating magnetic field, which was generated by three phrase armature windings of 75 kW class induction motor, to investigate the electrical and thermal characteristics during the transient state.

Expressional Analysis of Glucose Transporter Isoforms in the Efferent Ductules of Male Sprague Dawley Rat during Postnatal Development

  • Seo, Hee-Jung;Son, Chan-Wok;Lee, Ki-Ho
    • Reproductive and Developmental Biology
    • /
    • v.33 no.4
    • /
    • pp.211-216
    • /
    • 2009
  • A cell frequently utilizes glucose as a fuel of energy and a major substrate of lipid and protein syntheses. A regulation of glucose movement into and out of the cells is precisely controlled by cooperative works of passive and sodium-dependent active processes. At least 13 glucose cotransporter (Slc2a, GLUT) isoforms involve in passive movement of glucose in cells. The efferent ductules (EDs) play in a number of important functions for maintenance of male fertility. In the present study, using real-time PCR analysis, we determined gene expression of five Slc2a isoforms in the EDs. In addition, we compared expression levels of these Slc2a isoforms according to postnatal development ages, 1 week, 2 weeks, 1 month, and 3 months. Results from the current study showed that expression of Slc2a1, Slc2a3, and Slc2a5 mRNAs reached the highest levels at 1 month of age, followed by a transient decrease at 3 months of age. In addition, the level of Slc2a4 mRNA reminded at steady until 1 month of age and was significantly reduced at 3 months of age, whereas the highest level of Slc2a 8 mRNA was detected at 2 weeks of age. Data from the present study indicate a differential expression of various Slc2a isoforms in the ED according to postnatal ages. Thus, it is believed that glucose movement through the epithelial cells in the ED would be regulated by the coordinated manner among Slc2a isoforms expressed at a given age.

Analysis on Hypothetical Multiple Events of mSGTR and SBO at CANDU-6 Plants Using MARS-KS Code (중수로 원전 가상의 mSGTR과 SBO 다중 사건에 대한 MARS-KS 코드 분석)

  • Seon Oh YU;Kyung Won LEE;Kyung Lok BAEK;Manwoong KIM
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.18-27
    • /
    • 2021
  • This study aims to develop an improved evaluation technology for assessing CANDU-6 safety. For this purpose, the multiple steam generator tube rupture (mSGTR) followed by an unmitigated station blackout (SBO) in a CANDU-6 plant was selected as a hypothetical event scenario and the analysis model to evaluate the plant responses was envisioned into the MARS-KS input model. The model includes logic models for controlling the pressure and inventory of the primary heat transport system (PHTS) decreasing due to the u-tubes' rupture, as well as the main features of PHTS with a simplified model for the horizontal fuel channels, the secondary heat transport system including the shell side of steam generators, feedwater and main steam line, and moderator system. A steady state condition was successfully achieved to confirm the stable convergence of the key parameters. Until the turbine trip, the fuel channels were adequately cooled by forced circulation of coolant and supply of main feedwater. However, due to the continuous reduction of PHTS pressure and inventory, the reactor and turbine were shut down and the thermal-hydraulic behaviors between intact and broken loops got asymmetric. Furthermore, as the conditions of low-flow coolant and high void fraction in the broken loop persisted, leading to degradation of decay heat removal, it was evaluated that the peak cladding temperature (PCT) exceeded the limit criteria for ensuring nuclear fuel integrity. This study is expected to provide the technical bases to the accident management strategy for transient conditions with multiple events.

Fluid-Structure Interaction Study on Diffuser Pump With a Two-Way Coupling Method

  • Xu, Huan;Liu, Houlin;Tan, Minggao;Cui, Jianbao
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.87-93
    • /
    • 2013
  • In order to study the effect of the fluid-structure interaction (FSI) on the simulation results, the external characteristics and internal flow features of a diffuser pump were analyzed with a two-way flow solid coupling method. And the static and dynamic structure analysis of the blade was also caculated with the FEA method. The steady flow field is based on Reynolds Averaged N-S equations with standard $k-{\varepsilon}$ turbulent model, the unsteady flow field is based on the large eddy simulation, and the structure response is based on elastic transient structural dynamic equation. The results showed that the effect of FSI on the head prediction based on CFD really exists. At the same radius, the van mises stress on the nodes closed shroud and hub was larger than other nodes. A large deformation region existed near inlet side at the middle of blades. The strength of impeller satisfied the strength requirement with static stress analysis based on the fourth strength theory. The dynamic stress varied periodically with the impeller rotating. It was also found that the fundamental frequency of the dynamic stress is the rotating frequency and its harmonic frequency. The frequency of maximum stress amplitude at node 1626 was 7 times of the rotating frequency. The frequency of maximum stress amplitude at node 2328 was 14 times of the rotating frequency. No matter strength failure or fatigue failure, the root of blades near shroud is the key region to analyse.

Conformational changes of short, discrete Rouse chain during creep and recovery processes

  • Watanabe, Hiroshi;Inoue, Tadashi
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.2
    • /
    • pp.91-99
    • /
    • 2004
  • For the Rouse chain composed of infinite number of beads (continuous limit), conformational changes during the creep and creep recovery processes was recently analyzed to reveal the interplay among all Rouse eigenmodes under the constant stress condition (Watanabe and Inoue, Rheol. Acta, 2004). For completeness of the analysis of the Rouse model, this paper analyzes the conformational changes of the discrete Rouse chain having a finite number of beads (N = 3 and 4). The analysis demonstrates that the chain of finite N exhibits the affine deformation on imposition/removal of the stress and this deformation gives the instantaneous component of the recoverable compliance, $J_{R}$(0) = 1/(N-l)v $k_{B}$T with v and $k_{B}$ being the chain number density and Boltzmann constant, respectively. (This component vanishes for N\longrightarrow$\infty$.) For N = 2, it is known that the chain has only one internal eigenmode so that the affinely deformed conformation at the onset of the creep process does not change with time t and $J_{R}$(t) coincides with $J_{R}$(0) at any t (no transient increase of $J_{R}$(t)). However, for N$\geq$3, the chain has N-l eigenmodes (N-l$\geq$2), and this coincidence vanishes. For this case, the chain conformation changes with t to the non-affine conformation under steady flow, and this change is governed by the interplay of the Rouse eigenmodes (under the constant stress condition). This conformational change gives the non-instantaneous increase of $J_{R}$(t) with t, as also noted in the continuous limit (N\longrightarrow$\infty$).X>).TEX>).X>).