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Abstract

For the Rouse chain composed of infinite number of beads (continuous limit), conformational changes dur-
ing the creep and creep recovery processes was recently analyzed to reveal the interplay among all Rouse
eigenmodes under the constant stress condition (Watanabe and Inoue, Rheol. Acta, 2004). For completeness
of the analysis of the Rouse model, this paper analyzes the conformational changes of the discrete Rouse
chain having a finite number of beads (N =3 and 4). The analysis demonstrates that the chain of finite N
exhibits the affine deformation on imposition/removal of the stress and this deformation gives the instan-
taneous component of the recoverable compliance, J(0) = 1/(N-1)vkgT with v and kg being the chain num-
ber density and Boltzmann constant, respectively. (This component vanishes for N — o« .) For N=2, it is
known that the chain has only one internal eigenmode so that the affinely deformed conformation at the
onset of the creep process does not change with time ¢ and Jx(#) coincides with Jx(0) at any ¢ (no transient
increase of Jr()). However, for N = 3, the chain has N—1 eigenmodes (N-1 = 2), and this coincidence
vanishes. For this case, the chain conformation changes with  to the non-affine conformation under steady
flow, and this change is governed by the interplay of the Rouse eigenmodes (under the constant stress con-
dition). This conformational change gives the non-instantaneous increase of Jx(z) with ¢, as also noted in the

continuous limit (N — ).

Keywords : discrete Rouse model, creep, creep recovery, eigenmodes, orientational anisotropy

1. Introduction

The Rouse model (bead-spring model without hydrody-
namic interaction) is well established for non-entangled
polymers and its viscoelastic behavior has been fully elu-
cidated (Graessley, 1974; Ferry, 1980; Doi and Edwards,
1986; Pearson, 1987; Watanabe, 1999). However, the con-
formational change of the Rouse chain during the creep
and recovery processes was not analyzed so far, and no
analytical expression of the recoverable creep compliance
Tx(f) was reported (although results of numerical calcula-
tion of Jp were available; Berry, 1987).

Recently, we made a molecular analysis for the Rouse
model in the continuous limit where a chain was subdi-
vided into an infinite number of beads connected with
(Gaussian springs (Watanabe and Inoue, 2004). The anal-
ysis revealed interplay of the Rouse eigenmodes during the
creep and recovery processes under the controlled-stress
condition. This interplay governs an evolution of the ori-
entational anisotropy distribution along the chain backbone
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during these processes to determine the functional form of
the recoverable compliance,

S S 3 . &
Je(t) = VkBT,Z'l 6;{1 exp( /1,,)}

g,

2

with 4, = (in continuous limit) €Y

Here, v, ks, T, 7;, and A, are the chain number density, Bolt-
zmann constant, absolute temperature, the longest vis-
coelastic relaxation time, and p-th retardation time,
respectively: The numerical coefficient 6, appearing in
Eqn. (1) is determined by

tan 8,=6, (n< 8, <, <0,< ) 2)
6, approaches (p+1/2)xr for p — ~ and satisfies a sum-

mation rule, ¥ 1/62=1/10.
p=1
The continuous Rouse model is applicable to a real chain
in a time scale not very shorter than 1, of this chain. How-
ever, this model has an infinite number of retardation
modes and its A4, approaches zero with increasing mode
index p — <= ; see Eqns. (1) and (2). This feature is an arti-
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fact of the continuous model using infinite number of the
beads, and the fast dynamics of the real chain (having a
finite number of modes with 4, > 0) cannot be described by
this model. A corresponding artifact is well known for the
relaxation modulus G(2): The continuous model has an infi-
nitely large instantaneous modulus G(0) while the real
chain exhibits a finite value of G(0).

From this point of view, it is important to analyze the
conformational changes of a discrete Rouse chain (having
a finite number of retardation modes) during the creep/
recovery processes. Specifically, it is of interest to examine
how this chain having A,>0 abruptly changes its con-
formation on step-wise imposition/removal of the stress.
However, to our knowledge, the conformation (orienta-
tional anisotropy) during these processes has not been ana-
lyzed for the discrete Rouse chain having a finite number
(N) of the beads.

As the simplest but informative model cases, we have
chosen discrete Rouse chains with N=3 and 4 to analyze
their orientational anisotropy and calculate J(f). The anal-
ysis revealed that the chain is affinely deformed on step-
wise imposition/removal of the stress and this deformation
determines the instantaneous component of the recoverable
compliance, Jg(0) = 1/(N-1)vkT. (Thus, Jx(0) = 0 for N —
e ; see Eqn. (1).) Furthermore, the analysis indicated that
the chain with N = 3 is deformed non-affinely in the
steadily flowing state and the time-dependent part of J(f)
reflects a transient change from the initial, affine state to
this non-affine steady state in the creep process. (For the
chain with N =2, the initial, affine deformation is pre-
served in the whole creep process and the time-dependent
part of Jx(7) vanishes.) Details of these results are presented
in this paper.

2. Theoretical framework (Ferry, 1980; Doi and
Edwards, 1986; Watanabe, 1999)

2.1. Equation of motion

We consider a linear Rouse chain composed of N beads
each having the friction coefficient {. The neighboring
beads are connected by a Gaussian spring of the stiffness
k= 3kzT/a*, where a is the average size of the segment
(= root-mean-square length of the spring).

In the creep/recovery processes, a small shear stress (in
the linear viscoelastic limit) is abruptly applied to or
removed from a system containing v chains per unit vol-
ume. This stress affects the motion of the chains thereby
determining the flow velocity V(n,f) at the position r(n,f) of
the n-th bead of a given chain at time f.

We choose x and y directions as the shear and shear-gra-
dient directions. Then, the flow velocity V due to the
applied shear stress is written as V(n,0) = (¥(Or,(n.1), 0, 0),
where ¥() is the shear rate being uniform throughout the
system and r,(n,f) is the y component of r(n,7). Changes of
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r(n,t) with ¢ are fully described by the Rouse equation of
motion incorporating this V(n.t),

r(1,n V(1.0 r(Ly | | F(Ly
¢ a% r(25,t) _ V(ZE,t) = KA. r(2§t) + FE(2,t) 3)
r(N,1) V(N,1) r(N,) | | F(N,p)

In Eqn. (3), A is the well known Rouse matrix with an
example being shown later in Eqn. (6), and F(n,) is the
Brownian force acting on the n-th bead at time ¢ F is mod-
eled as a white noise characterized by the first- and second-
moments of its component Fy, in the ¢ direction (& =1x, ¥, 2),

<Foy(np)> = 0, <F(nnFgn'ty> = 28kpT 8, Xt—t)0yp
4

Here, <...> denotes the average over the chains in the system.

2.2. Orientational anisotropy and stress

The orientational anisotropy of the n-th spring (n =1, 2,
.., N=1) under the small shear field (in the linear vis-
coelastic limit) is fully described by the shear orientation
function, S(n,t)=a"2<ux(n,t)uy(n,t)>, where u, and u, are
the x- and y-component of the bond vector u(n\) =
r(n+1,0)-r(n,t). The shear stress at the time ¢, o(?), is simply
related to the total anisotropy,

(1) = 3vk, T S S(n,1) (5)
n=1

(In general, Eqn. (5) is valid not only in the linear visoelas-
tic limit but also under large shear field.)

o(t) is kept constant during the creep/recovery processes.
Consequently, the flow velocity V(n,?) is determined by the
Rouse chain itself in a way that the chain satisfies this con-
stant stress condition and Eqgn. (3) simultaneously. For the
V(n,f) thus determined, we can solve Eqn. (3) to calculate
u(n,t) and S(n,t). The calculation of u(n,f) can be conve-
niently achieved by using appropriate eigenvectors (normal
coordinates), as explained below. The readers who are
familiar with the Rouse analysis can skip the following
section and directly proceed to section 4.1.

3. Results

3.1. Four-bead Rouse chain (N =4)
For N =4, the Rouse matrix is given by

11 0 0

|1 =210

A'01—21 ©)
0 0 1 -1

This A is associated with four (zero-th to third) Rouse
eigenmodes, and the zero-th mode represents the diffusion
of the center of mass of the chain. For the first to third
internal eigenmodes (p = 1-3) related to the chain confor-
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rnation, a linear algebraic calculation gives the eigenvectors
o, (expressed as a linear combination of the bond vectors
u(n,f) and the eigenvalues o,

p=1: &) =-u(1,0-L2u0)-u3.D, oy =—(2-J2)

(7a)
p=2 fz(t) =—u(1,H+u(3,0), oy =-2 (7b)
p=3: &O) =-u(1.0)+.2u2.)-uB,D, o =—(2+./2)

(70)

“These &, are not normalized.) The shear stress (Eqn. (5))
s rewritten in terms of the x- and y-components of &, X,(1)
and Y,(1), as

(N2 X(DY5()] - (8)

Thus, the stress is completely determined by the shear
somponents <X,(1)Y,(1)> of the orientational anisotropies
of respective eigenmodes.

For X,(¢) and Y,(1), Eqn. (3) is rewritten in a decoupled

form,
dx,n_ 1 : 1
St _?X,,(t)ﬂ'(t) Y (0+z Jepl?) ©)
av,m 1
e =g ) 1o

Here, 7,1 is the viscoelastic relaxation time for the first to
‘hird eigenmodes given by

&

P 2Ka,
Mlg(p 1, e (p 2), K_ng(p 3) (11)

(The superscript ‘[4]" specifies that 7, is the relaxation

time of the four-bead Rouse chain.) f,, and f,, appearing
in Eqns. (9) and (10) are the x- and y-components of lin-
sarly combined Brownian forces f,(1),

p=1: fi(®) = FQ.H+(J2-DF2,0~(J2 -1)F(3,))-F(4.,0)
(12a)

p=2: () =F(1,0)-FQ)-F3.n+F(4,r) (12b)
p=3: fs(0) = FL,H—(L2+DF 2,0+ 2 +DF(3,0)-F (4.0
(12¢)

From Egns. (4), (9), (10), and (12) together with appro-
priate initial conditions X,(0) and Y,(0), we calculated the
orientation function S(r,f) and the recoverable compliance

Ir(®). The results for the creep and creep recovery pro-
icesses are summarized below.

3.1.1. Calculation for creep process
For the creep process, the initial values X,(0) and Y,(0)
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coincide with X, and ¥, at equilibrium and are char-
acterized by the second-moment averages,

(X0 = RO = (GO = (V) = 2
(13a)

{XA0)}) = ({ (0}’ >— = (X, (0)Y,(0)y=0  (13b)

From Eqns. (4), (9), (10), and (12) together with this initial
condition, we find

K,(0) = (YO F)8fy dr 1 vexo~ zm) (14)

Requiring the stress o(f) to be always identical to &,
(applied stress) during the creep process, we find an inte-
gral equation determining the shear rate ¥(#) (cf. Eqns. (8)
and (14)):

Gy = VisT], 't z exp( 64]) (15)

This equation can be solved with the Laplace transfor-
mation method (explained in Appendix A) to give

. G, Oy
no = T 3k, T

6+,/6)K t ), 2(6-./6)Kk
{6(t)+i—1—5—“c£Lexp(—F)+%Lexp( [4])} (16)
Here, 1" (=vksT 2 T[ J—SVkBTC/4K) is the zero-shear vis-

cosity of the four- bead Rouse chain, and A, and A, are
the first- and second retardation times given by

i _ (6+/60)C i _ (6=4/6)C
A= 20k = 20K a7

The corresponding recoverable compliance Jx(f) (= Kt)/o,
—t/ne™) is written as

JR(t)='3v1m~
7+2./6 7-2./6
{1+ 25 {1 exp( /1[4)}+ 5 {1 ep( zgﬂ)ﬂ (18)

The eigenmode anisotropies <X,(£)Y,(f)> are calculated
by substituting Eqn. (16) into Eqn. (14). These anisotro-
pies, expressed in a form of the stress 0,() sustained by the
p-th eigenmode (cf. Eqn. (8)), are summarized as

3 ka

oi(t)= (X((OY,(e))

_ 242 (J6+ DB+ !
_GO[ A e
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ROSVAES exp(—é):l (19a)
o)=L X (v,
2a
= q{é+%exp( /1[4] 2%exp( t)} (19b)
3(r)—3"k‘* (XD Yo(0))
(2= f <J6+1)<f D, ( r)
1[4]
+ 6‘130 3+1 exp(-zé—]ﬂ (19¢)

Of course, a sum 6,(5)+0,(f)+05(t) coincides with ¢ at any ¢.

The orientation function S(n,f) = a'2<u).(n,t)uy(n,t)> of the
n-th bond vector is calculated from the eigenmode
anisotropies <X,(#)Y,(f)> thus determined. The results are:

S(1,6) =83,

= —1—5[(X1(t)Y.(t)>+4(Xz(t)Yz(l)>+(X3(t)Y3(t)>]

o4l Ly (1[4])7Lexp( ﬂé‘”ﬂ (20a)

90ka
SQ.0) = %KX.(t)Y,(z)>+<x3(t>y3(t)>]
16 6-1
45ka7‘I: - exp 1141) LCXP( 224])} (20b)

An effective shear strain for the n-th bond vector is given
by 35(n), as explained in Appendix B. This effective
strain becomes a key in our later discussion of the chain
conformation during the creep and recovery processes.

3
For the end-to-end vector R(f)=3 u(n,t), the orienta-
n=1
tion function is defined as Si(f) = <Rx(t)Ry(t)>/<{Req}2>
with <{R*}*>(=3a") being the mean-square end-to-end
distance at equilibrium. As clear from this definition, Sk(?)
is contributed from the orientation of respective bond vec-
tors S(n,p) (= a‘2<ux(n,t)uy(n,t)>) and the cross-correlation
of different bond vectors S.(n,n't) = @ *<u(n,Hu(n',)>ye

(= S0 n0):

Se(f) = % ;S(n,ml

PRI @1

nn{ #n)

Note that the bond vectors always have a statistical dis-
tribution in their orientation and S.(n,n',f) represents a ten-
dency of n-th and n'-th bond vectors to be oriented in the
same direction. (S.(n,n'f) has a non-zero value when the
distribution functions for the »n-th and »'-th bond vectors
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are not independent with each other.)

S(n,f) appearing in Eqn. (21) is given by Eqns. (20a) and
(20b), and S.n,n't) is calculated from the eigenmode
anisotropies as

S(1,2,1) = §42,3,1) = 1—“6%[(X1(1)Y|(I)>—(Xa(t)Ys(t))]

6ka37‘[4"64£e’(p( ;LMJ}"AE‘:XP( )/[24])} (22a)

S(1.3.0) = -

2[(X1(t)Y|(t)> HX (DY AN+HX(DHY5())]

= s 1{2 (J6+1)exp( [4])+(A/6—1)exp(—éﬂ

(22b)

From Eqns. (20)-(22), we obtain an explicit expression of
SR(t):

N

It should be emphasized that the chain conformation is
characterized not only with S(n,7) but also with S.(n,n'0)
and Sg(?).

3.1.2. Calculation for creep recovery process
The eigenmode anisotropies in the creep process at t —
e~ are given by (cf. Eqn. (19))

_ 42+ 2)d’c, _ 2d°q,

<X1 Y1>.\'t - 15VkBT ’ <X2Y2>sr - 15VkBT )
_4(2-2)d’ay

<X3Y3>st - 15VkBT (24)

These <X,Y,>; serve as the initial condition for the creep
recovery from the steadily flowing state.

From Eqns. (4), (9), (10), and (12) and this initial con-
dition, we calculated the eigenmode anisotropies for the
creep recovery process with a method similar to that uti-
lized for the creep process. The stress ¢,(f) sustained by the
p-th eigenmode, the orientation functions S(n,f) and Sk(?),
and the cross-correlation function S.(n,n't) obtained from
those anisotropies are summarized as

[6,(D])ccovery = [0,(52)] 1oy [Gp ()] creep (25)
[S(1.0 ) recovery = [S(7,20) reep=[S(1,8) Lcrecp (26)
[Sr(D recovery = [SR(%) ] creep=[Sr(D]creep 27)
[Sc(n.n" )] ecovery = [Se(non’ ) reey =[Sm0 )]s, (28)

Here, the subscript ‘creep’ stands for the properties for the
creep process specified by Eqns. (19), (20), (22), and (23).
The shear rate, that matches the eigenmode anisotropies to
ensure the zero-stress condition during the creep recovery,
is given by
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[j(t)]recavgry = _%
2(6+./6 -
[60”%&6 p( xf‘*) iﬁgﬁLexp( 2}241)} (29)
3.2. Three-bead and Two-bead Rouse chains (V=3
and 2)
3.2.1. N=3

For the three-bead Rouse chain, we introduced eigen-
vectors to solve the equation of motion (Eqn. (3)) and cal-
i:ulate the eigenmode anisotropies with a method similar to
that explained for the four-bead chain. The calculation is
rnuch easier for the three-bead chain having only two inter-
1al eigenmodes related to the chain conformation.

For the creep process, the eigenmode anisotropies thus
sbtained were utilized to calculate the stress 0,(f) sustained
ny the p-th eigenmode (p = 1, 2), the orientation functions
Y(n,H) (n=1, 2) and Si(t), and the cross-correlation func-
Aon S(n,n'1):

(1) = O'O[i 4exp( /,53]):1 oy(1) = |:4 Al'_eXp( 2’[3])] (30)

- _ 0
S(L1) =820 = g
__ % t
Sx(0) = 12vk37{3_exP(_/l[l3])} G
o,
81,2,6)=8.2,1,0) = vk 7{1 exp( lmﬂ (32)

The corresponding recoverable compliance is given by

J(t) = 2\/]1(8]_[1+}‘(1-exp(_1%m (33)

The three-bead Rouse chain has single retardation mode,
and A,”' appearing in Eqns. (30)-(33) is the retardation
time of this mode,

3 7
A== (34)

(This chain has two relaxation modes, and 7,

Egn. (34) is the longest relaxation time.)

Eqns. (25)-(28) hold also for the creep recovery of the
three-bead Rouse chain. Thus, o,(f), S(n,), Sx(), and
S(n,n',p) for the recovery process is obtained from those for
the creep process (Eqns. (30)-(32)).

appearing in

3.22. N=2

The two-bead Rouse chain exhibits the single Maxwell
relaxation with the relaxation time 7,”’={/4x and the
instantaneous modulus G(0)=vkpT. This chain is known to
have only instantaneous component of the recoverable
compliance:

Korea-Australia Rheology Journal

Jr(®) = k T (t-independent) (35)
The stress during the creep/recovery process is sustained
by the single bond vector, and the end-to-end vector
(=bond vector) has the r-independent orientation function,

Sp(1) = 3vk 7= 36(0) (0) (for creep), O (for recovery) (36)

4, Discussion

4.1. Crossover from affine to non-affine conforma-

tion during creep/recovery process
4.1.1. N=4
For the four-bead Rouse chain, Fig. 1a shows plots of the

0.8
Rouse model, N =4
creep
A
)
0 1
04 + eeememnemeonaae
—_ n=2 ,”
g _____ .
e ——x
03 1,3
(b)
0.2 2 ) s L
0.8
0.6 -
<
2%}
0.4
(©)
0.2 A s i I
-3 -2 -1 0 1 2
log (/7))

Fig. 1. Creep behavior of four-bead Rouse chain. Fractional
stress sustained by p-th eigenmode &, (r) (part a), nor-
malized orientation function of the bond vectors S (n,g)
(part b), and normalized orientation function of the end-
to-end vector Sk (1) (part c) are plotted against the nor-
malized time 7" (7,“)=longest relaxation time of the
four-bead chain).
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fractional stress sustained by the p-th eigenmode during the
creep process, G,(t) =0,(t)/c, (cf. Eqn. (19)), against the
normalized time #/7," (with 7,/ being the longest relax-
ation time; Eqn. (11)). Figs. 1b and 1c show plots of the
normalized orientation functions corresponding to the frac-
tional stress, S (n,0=S(n,f)/}; and Sz (£)=Sz(®)/Y; (cf. Eqns.
(20) and (23)) where ¥%=0y/3vksT is the instantaneous
strain of the four-bead Rouse chain (having the instanta-
neous modulus G(0)=3vksT) induced by the stress ;.

At the onset of creep (=0), S (n,0) (=1/3) is independent
of n; see Fig. la. Furthermore, different bond vectors
exhibit no cross-correlation at 7 = 0(S.(n,n',0)=a"> < u,(n,0)
u,(n',0)> =0 for n # n'; see Eqn. (22)). These features are
characteristic to an affine deformation of the equilibrium
conformation, as explained in Appendix B. Thus, the iso-
tropic chain conformation at equilibrium (at ¢ < 0) is
affinely deformed at =0 by the magnitude %=35(n,0)=
0y/G(0). (Note that 35(n,f) = 3%S (n,f) represents an effec-
tive strain for the n-th bond vector; cf. Appendix B.)

The end-to-end vector R is also deformed by the mag-
nitude ¥ at £=0, as confirmed a simple calculation: This
deformation gives R(0) = E(};)*R*, where R® is the the
end-to-end vector at equilibrium (r < 0) and E(¥%) is the
shear displacement tensor for the strain ¥, (cf. Eqn, (B1) in
Appendix B). For this R(0), we find S (0) = <{ E(%)*R*}.
{E(¥%) R} >3’ = <{R,“(n)}’>/3a* = 1/3, which is in
agreement with the Sz (0) value given by Egn, (23) and
shown in Fig. lc.

As seen in Fig. 1a, the stress is equally sustained by the
three eigenmodes (3, (0) = 1/3) at the onset of creep where
the equilibrium chain conformation is affinely deformed.
For >0, the fractional stress for the lowest eigenmode
& (¢) increases with ¢ and those for the higher eigenmodes
&, (f) and &, () decrease with . Correspondingly, S (2,7
increases while S (1,7) and S (3,f) decrease with f; see Fig.
1b. These changes of S (n,f) indicate that the orientation at
t >0 is larger for the chain center than for the chain end
and the chain conformation exhibits a crossover from the
initial affine state to the steady non-affine state during the
creep process. Specifically, the orientation of respective
bond vectors (n = 1-3) in the steadily flowing state is quan-
tified by an effective shear strain y,(n) = 3S(n, ) (cf. Eqn.

(20)),

= - 3% _9 20 _6
%‘1(1) - }/31(3) - IOVkBT_ IO’YG’ %1(2) - SVkBT_ SYG (37)

with % = 6/G(0) = o/3vkgT.

The above crossover is associated with a growth of the
cross-correlation of different bond vectors characterized by
S.(n,n',t) >0 at ¢ > 0; see Eqn. (22)). Because of this cross-
correlation, the orientation at 7 > 0 is larger for the end-to-
end vector than for respective bond vectors (Sk(f) >
S(np); ¢f. Figs. 1b and lc.

The crossover from the affine to non-affine state results
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from the interplay among the eigenmodes under the con-
stant stress condition. Namely, the growth of the anisotropy
of the lowest eigenmode (o< &; ) to its steady state value is
achieved only at 1> A, (cf. Eqn. (19a)), and the higher
eigenmodes compensate this retarded growth by first
increasing their anisotropies (< &;, &;) above the steady
state values and then exhibiting the decay to these values;
see Fig. 1a. Similar interplay has been noted for the con-
tinnous Rouse chain with N — «~ (Watanabe and Inoue,
2004).

Now, we turn our attention to the conformational changes
during the creep recovery from the steadily flowing state.
For this recovery process, Figs. 2a-2c show plots of the
fractional stress for the eigenmodes &,(f) and the nor-
malized orientation functions S (n,f) and Sk () against the

Rouse model, N =4
recovery

04 p=1

G (H)

04 1 L 1 L
0.1

005 | n=2

S(n,0)
o
R

-0.05

0.1 1 ) 1 L
04

0.3

0.2

Sgr(t)

0.1

0

_0. 1 1 1 1
3 -2 -1 0 1 2
log (/1))

Fig. 2. Creep recovery behavior of four-bead Rouse chain. Frac-
tional stress sustained by p-th eigenmode &, (f) (part a),
normalized orientation function of the bond vectors § (np)
(part b), and normalized orientation function of the end-
to-end vector S (?) (part c) are plotted against the nor-
malized time 7,/ (11[4]=10ngest relaxation time of the
four-bead chain).
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rormalized time #7," (cf. Eqns. (25)-(27)).

At the onset of recovery (t=0), the chain has $(1,0)
8 (3,0) ==1/30 and §(2,0)=1/15 (Fig. 2b). The effective
strains of respective bond vectors obtained from these
§ (n,0) values, % = 37,5 (n,0) = —3%/10 (for n = 1, 3) and 7/
i (for n=2), are smaller than the effective strain 7, under
steady flow (Eqn. (37)) and the decrease, ¥,—%; = —¥, is the
same for all bond vectors. This result indicates that the
son-uniformly oriented chain conformation under steady
low is affinely deformed on removal of the stress at £ =0
vy the magnitude —¥% =—-0/G(0) (cf. Appendix B). The
5z (0) value (=1/3; Fig. 2b) indicates that the end-to-end
vector having the orientation Sz=2/3 under steady flow
‘Fig. 1¢) is also deformed by the magnitude —; on removal
of the stress.

The affine deformation of the non-uniformly oriented
zhain under steady flow leads to an instantaneous adjust-
ment of the stresses sustained by respective eigenmodes

thereby ensuring the zero-stress condition at ¢ = 0 ( 2 G,(0)

= 0; see Fig. 2a). In this state, the central bond Vector is still
oriented in the positive direction (flow direction during the
zreep) to have $(2,0) > 0, while the end bond vectors are
negatively oriented to compensate the positive orientation
at the center (5(1,0) = §(3,0) =-S5 (2,0)/2; see Fig, 2b).
The orientations of these bond véctors and end-to-end vec-
tor decay with ¢ (Figs. 2b and 2¢), and the stresses sus-
tained by respective eigenmodes decay accordingly (Fig.
2a). During this decay process, the eigenmodes exhibit the
interplay to tune the decay rates of their g,(#) and S(n,)
thereby satisfying the zero-stress condition. Similar inter-
play has been noted also for the continuous Rouse chain
with N — o (Watanabe and Inoue, 2004).

4.1.2. N=3 and 2

For the three-bead Rouse chain having the instantaneous
modulus G(0) = 2vkgT, changes of &, (1)(=0,(t)/0y), S (n,t)
(=S(n,0)/Ys with ¥% = 6/G(0)), and Sz (H)(=Sx(*)/}%) during
the creep and recovery processes are shown in Figs. 3 and
4, respectively. The &, (9), S (n,b), Sk (¢), specified by Eqns.
(30) and (31) together with Eqns. (25)-(27), are plotted
against the time ¢ normalized by the longest relaxation time
7" (Eqn. (34)).

The behavior of the three-bead chain during the creep
process is qualitatively similar to that of the four-bead
chain. Namely, the three-bead chain exhibits the affine
deformation (by the magnitude };) from the isotropic con-
formation to have § (n,0) = Sx (0)=1/3 on imposition of the
stress 0y (Fig. 3b). The two eigenmodes sustain the same
stress (&, (0)=6, (0)=1/2) on this deformation (Fig. 3a).
After the affine deformation, &, (z) and Sk (¢) evolve to their
steady state values (&) (o0 )=3/4, & (o0 )=1/4, S (e=)=1/2)
with increasing ¢.

Concerning this change, we note that the orientation
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Fig. 3. Creep behavior of three-bead Rouse chain. Fractional
stress sustained by p-th eigenmode &, (f) (part a) and nor-
malized orientation functions of the bond vectors and end-
to-end vectors § (n,1) and Sz () (part b) are plotted against
the normalized time #7,"" (,;"'=longest relaxation time of
the three-bead chain).

functions of the bond vectors S (n,f) are independent of f;
see Fig. 3b. This result is a natural consequence of an
equivalence of the two (all) bond vectors of the three-bead
chain: These bond vectors have the same S (n,f) at any t
because of this equivalence, so that the initial orientation
(8 (n,0)=1/3) being in balance with the applied stress is
preserved throughout the creep process. (For the four-bead
chain, the center and end bond vectors are not equivalent
and thus §(n,t) exhibits the t-dependent changes; cf. Fig.
1b.)

Here, it should be emphasized that the r-independence of
S(n,t) of the three-bead chain does not mean an instan-
taneous achievement of the steady flow: The positive cross-
correlation of the two bond vectors grows with ¢ (see Eqn.
(32)), meaning that a tendency of these vectors to be ori-
ented in the same direction is enhanced with r. This growth
results in the increase of Sk (f) of the end-to-end vector
seen in Fig. 3b. The steady flow (under which the cross-
correlation is fully developed) is achieved only at ¢ > A,"*l.
The corresponding steady conformation does not coincide
with that obtained by affinely deforming the isotropic equi-
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Fig. 4. Creep recovery behavior of three-bead Rouse chain. Frac-
tional stress sustained by p-th eigenmode &, (1) (part a)
and normalized orientation functions of the bond vectors
and end-to-end vectors S (n,t) and Sk (t) (part b) are plot-
ted against the normalized time #/7,”' (7;"'=longest relax-
ation time of the three-bead chain).

librium conformation: No cross-correlation emerges on this
affine deformation, as explained in Appendix B. The
growth of the cross-correlation and changes of &, (f) are
governed by the interplay of the Rouse eigenmodes under
the constant stress condition, as similar to the situation for
the four-bead chain.

On removal of the stress, the three-bead chain exhibits
the affine deformation (by the magnitude —y;) from the
shear-oriented conformation under steady flow to have
5 (n,0)=0 and Sk (0)=1/6. In the successive recovery pro-
cess, the orientation of the two bond vectors exhibits no
further change (S (n,)=0 at 7> 0) because of their equiv-
alence explained above. However, their cross-correlation,
remaining after this affine deformation, decays with t (cf.
Eqgns. (32) and (28)) and &,(f) and Sz (f) decay accord-
ingly. This decay is governed by the interplay of the eigen-
modes, as similar to the situation for the four-bead chain.

The creep/recovery features of the three-bead and four-
bead chains demonstrate the importance of the interplay of
the Rouse eigenmodes for the bead number N =3. How-
ever, the situation is different for N =2.
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No interplay among different eigenmodes exists for the
two-bead chain having only one internal eigenmode. For
this reason, the chain exhibits the constant orientation
Sp(=06,/3G(0)) throughout the creep process and this ori-
entation vanishes instantaneously on removal of the stress;
see Eqn. (36). This result in turn demonstrates the impor-
tance of the interplay of the eigenmodes in the transient
conformational changes seen for N =3.

4.2. Additional comments

The fundamental feature of the discrete Rouse chain with
N =3 and 4, the transient conformational changes during
the creep/recovery processes governed by the interplay
among the eigenmodes, remains the same for the chains
with larger N. Indeed, these changes have been confirmed
for the continuous Rouse chain with N — & (Watanabe
and Inoue, 2004).

It should be also noted that each retardation mode of
Jx(@) (for N =3; Eqns. (1), (18), and (33)) is contributed
from all Rouse eigenmodes (that are defined as the coor-
dinates obeying the decoupled equation of motion; cf. Eqn.
(9) and (10)). This fact indicates that the functional form of
the non-instantaneous part of Jg(f) is determined by the
interplay of the eigenmodes under the constant stress con-
dition.

Finally, we focus on the instantaneous component of the
recoverable compliance, Jx(0)=1/G(0) with G(0) being the
instantaneous modulus given by WN-1)kzT; cf. Eqns.
(18), (33), and (35). This component, corresponding to the
delta function terms appearing in Egns. (16) and (29),
reflects the affine deformation of the chain on imposition/
removal of the stress. In relation to this point, we note that
the continuous Rouse chain has an infinitely large G(0)
and thus exhibits the affine deformation of infinitely small
magnitude. This leads to Jx(0)=0 for this chain (cf. Eqn.
1)

5. Concluding remarks

For completeness of the analysis of the Rouse model, we
have examined the conformational changes of the discrete
Rouse chains (N=3 and 4) during the creep/recovery pro-
cess. These chains exhibit the affine deformation of the
magnitude ;= 0y/G(0) (G(0)=(N—1)vkyT) on imposition/
removal of the stress op, and this deformation gives the
instantaneous component of the recoverable compliance,
Jr(0)=1/G(0). Transient conformational changes occur
after this affine deformation, and these changes are gov-
erned by the interplay among the Rouse eigenmodes under
the constant stress condition. The non-instantaneous (-
dependent) part of Ji(f) of the chains with N =3 reflects
these conformational changes and is determined by the
interplay among the eigenmodes.
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Appendix A. Solution of Eqn. (15)

For the Laplace transformation of the shear rate, I"'(s)=[;
dty () exp(—st), Eqn. (15) is rewritten as

vkaTT"(s) Z

Al
p=1 5+ 1/11‘” (AD

with 7,"¥ being given by Eqn. (11). After rearrangement of
tign. (A1), we find

I(s) = 1{ L2k, 2(6+./6)x L _2(6- NOLS }
3vk 5Cs 158s+ 1AMy 15¢(s+ /A5
(A

[4]

Here, 1, and A, are the first- and second retardation
L. mes given by

g6+:{6}§ }/2

20k

Mlg (A3)

20k

The Laplace inversion of Eqn. (A2) gives

[5(;)+Mexp(_L)+2 6-./6 Kexp( zf)] (A4)

15¢ A 15¢

Here, 1" (=vksT Z Y =5vks T{/4K) is the zero-shear vis-

p=
wosity of the four-bead Rouse chain.
Appendix B. Effective strain for bond vector

For the Rouse chain during the creep and recovery pro-
cesses in the linear viscoelastic limit, no correlation exists
tetween z-component and x- and y-components of its bond
vector u(n,t) at any time ¢. For this case, the bond vector
can be expressed as

I yvm 0
u(nt) = E(y(n))you’(n) with E(y.(n))=10 1 o @B
0 0 1

Here, u°(n) is a reference vector that is isotropically ori-
ented and has the mean-square size <{u°(n)}>=d".
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E(y,(n)) 1s a shear displacement tensor corresponding to an
effective shear strain y(n) defined for u(n,r). From Eqn.
(B1), we find

< u(n,Hu,(n,0)>= <{ E(p(n))ou(n)} { E(y(n))ou(n)},>
=) <{u,(n)}*>=aym/3 (B2)

Namely, the orientation function S(n,t) = a"2<ux(n,t)uy(n,t)>
coincides with y(rn)/3.

If no cross-correlation exists between different bond vectors
at a given time ¢ (<u(n,)u(n',t)>= 0 for n# n') and the effec-
tive strain is independent of n (%(n) = ), the reference vector
u°(n) coincides with the n-th bond vector u*(r) at equilib-
rium. For this case, the chain conformation at the time ¢ coin-
cides with that obtained by affinely deforming the equilibrium
conformation to a magnitude }. In presence of the cross-cor-
relation (<u,(n,0)u(n',5>F 0 for n¥ n'), this coincidence van-
ishes even if y(n) (=35(n,f) is independent of n.

If y,(n) is dependent on n, the chain is non-uniformly ori-
ented along its backbone. After an affine deformation of
this non-uniform conformation to a magnitude %', the
effective strain for the bond vector becomes y(n) + ¥,
Namely, the affine deformation gives the same increment
of the effective strain to all bond vectors irrespective of the
orientation distribution along the chain backbone just
before this deformation.
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