• 제목/요약/키워드: Statistical feature

검색결과 668건 처리시간 0.029초

Image Description and Matching Scheme Using Synthetic Features for Recommendation Service

  • Yang, Won-Keun;Cho, A-Young;Oh, Weon-Geun;Jeong, Dong-Seok
    • ETRI Journal
    • /
    • 제33권4호
    • /
    • pp.589-599
    • /
    • 2011
  • This paper presents an image description and matching scheme using synthetic features for a recommendation service. The recommendation service is an example of smart search because it offers something before a user's request. In the proposed extraction scheme, an image is described by synthesized spatial and statistical features. The spatial feature is designed to increase the discriminability by reflecting delicate variations. The statistical feature is designed to increase the robustness by absorbing small variations. For extracting spatial features, we partition the image into concentric circles and extract four characteristics using a spatial relation. To extract statistical features, we adapt three transforms into the image and compose a 3D histogram as the final statistical feature. The matching schemes are designed hierarchically using the proposed spatial and statistical features. The result shows that each feature is better than the compared algorithms that use spatial or statistical features. Additionally, if we adapt the proposed whole extraction and matching scheme, the overall performance will become 98.44% in terms of the correct search ratio.

통계적 홍채 특징 추출 방법 (Feature Extraction for Iris Recognition by Using Statistical Methods)

  • 배광혁;이철한;노승인;김재희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.61-64
    • /
    • 2002
  • In this paper, we propose the iris feature extraction by using statistical methods. There are many approaches for iris feature extraction, but most of them require a set of parameters that one should choose for the transformation to obtain a useful representation of the iris. It would be most useful to estimate the method of the iris feature extraction from iris itself. Therefore, we apply the unsupervised statistical methods for the iris feature extraction.

  • PDF

A Novel Statistical Feature Selection Approach for Text Categorization

  • Fattah, Mohamed Abdel
    • Journal of Information Processing Systems
    • /
    • 제13권5호
    • /
    • pp.1397-1409
    • /
    • 2017
  • For text categorization task, distinctive text features selection is important due to feature space high dimensionality. It is important to decrease the feature space dimension to decrease processing time and increase accuracy. In the current study, for text categorization task, we introduce a novel statistical feature selection approach. This approach measures the term distribution in all collection documents, the term distribution in a certain category and the term distribution in a certain class relative to other classes. The proposed method results show its superiority over the traditional feature selection methods.

Tree-structured Classification based on Variable Splitting

  • Ahn, Sung-Jin
    • Communications for Statistical Applications and Methods
    • /
    • 제2권1호
    • /
    • pp.74-88
    • /
    • 1995
  • This article introduces a unified method of choosing the most explanatory and significant multiway partitions for classification tree design and analysis. The method is derived on the impurity reduction (IR) measure of divergence, which is proposed to extend the proportional-reduction-in-error (PRE) measure in the decision-theory context. For the method derivation, the IR measure is analyzed to characterize its statistical properties which are used to consistently handle the subjects of feature formation, feature selection, and feature deletion required in the associated classification tree construction. A numerical example is considered to illustrate the proposed approach.

  • PDF

유전알고리즘을 이용한 최적 k-최근접이웃 분류기 (Optimal k-Nearest Neighborhood Classifier Using Genetic Algorithm)

  • 박종선;허균
    • Communications for Statistical Applications and Methods
    • /
    • 제17권1호
    • /
    • pp.17-27
    • /
    • 2010
  • 분류분석에 사용되는 k-최근접이웃 분류기에 유전알고리즘을 적용하여 의미 있는 변수들과 이들에 대한 가중치 그리고 적절한 k를 동시에 선택하는 알고리즘을 제시하였다. 다양한 실제 자료에 대하여 기존의 여러 방법들과 교차타당성 방법을 통하여 비교한 결과 효과적인 것으로 나타났다.

Facial Feature Extraction with Its Applications

  • Lee, Minkyu;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • 제2권1호
    • /
    • pp.7-9
    • /
    • 2015
  • Purpose In the many face-related application such as head pose estimation, 3D face modeling, facial appearance manipulation, the robust and fast facial feature extraction is necessary. We present the facial feature extraction method based on shape regression and feature selection for real-time facial feature extraction. Materials and Methods The facial features are initialized by statistical shape model and then the shape of facial features are deformed iteratively according to the texture pattern which is selected on the feature pool. Results We obtain fast and robust facial feature extraction result with error less than 4% and processing time less than 12 ms. The alignment error is measured by average of ratio of pixel difference to inter-ocular distance. Conclusion The accuracy and processing time of the method is enough to apply facial feature based application and can be used on the face beautification or 3D face modeling.

비디오 영상에서 통계적 영상특징에 의한 블록 모션 측정 (Statistical Image Feature Based Block Motion Estimation for Video Sequences)

  • Bae, Young-Lae;Cho, Dong-Uk;Chun, Byung-Tae
    • 한국콘텐츠학회논문지
    • /
    • 제3권1호
    • /
    • pp.9-13
    • /
    • 2003
  • 이 논문에서는 비디오 영상에서의 블록 모션 측정을 위한 통계학적인 특징에 기반 한 알고리즘을 제안한다. 우선 참조 블록의 통계학적인 특징을 구하고, 이를 참조 블록의 통계적 특징과 정규 시작점 패턴 (SPP) 에 퍼져 있는 블록에서의 특징을 비교하여, SPP에서의 시작점 (SP) 후보를 선택하는 데에 적용한다. 최종적인 SP 들은 SP 후보 들에서의 평균절대차이 (MAD) 값으로 구한다. 마지막으로 기존의 고속탐색 알고리즘인 BBG나 DS 그리고 TSS중 하나를 이용하여 참조블록의 모션 벡터를 최종 SP를 시작점으로 하여 계산하였다. 실험결과는 기대 했던 바와 같이 최종 SP로부터의 시작점들이 전역최소값 (global minimum)에 근접함을 보여 주었다.

  • PDF

통계적 모멘트를 이용한 정확한 환경 지도 표현을 위한 저가 라이다 센서 기반 유리 특징점 추출 기법 (A Low-Cost Lidar Sensor based Glass Feature Extraction Method for an Accurate Map Representation using Statistical Moments)

  • 안예찬;이승환
    • 로봇학회논문지
    • /
    • 제16권2호
    • /
    • pp.103-111
    • /
    • 2021
  • This study addresses a low-cost lidar sensor-based glass feature extraction method for an accurate map representation using statistical moments, i.e. the mean and variance. Since the low-cost lidar sensor produces range-only data without intensity and multi-echo data, there are some difficulties in detecting glass-like objects. In this study, a principle that an incidence angle of a ray emitted from the lidar with respect to a glass surface is close to zero degrees is concerned for glass detection. Besides, all sensor data are preprocessed and clustered, which is represented using statistical moments as glass feature candidates. Glass features are selected among the candidates according to several conditions based on the principle and geometric relation in the global coordinate system. The accumulated glass features are classified according to the distance, which is lastly represented on the map. Several experiments were conducted in glass environments. The results showed that the proposed method accurately extracted and represented glass windows using proper parameters. The parameters were empirically designed and carefully analyzed. In future work, we will implement and perform the conventional SLAM algorithms combined with our glass feature extraction method in glass environments.

AE 신호 및 신경회로망을 이용한 공작기계 주축용 베어링 결함검출 (Detection of Main Spindle Bearing Defects in Machine Tool by Acoustic Emission Signal via Neural Network Methodology)

  • 정의식
    • 한국생산제조학회지
    • /
    • 제6권4호
    • /
    • pp.46-53
    • /
    • 1997
  • This paper presents a method of detection localized defects on tapered roller bearing in main spindle of machine tool system. The feature vectors, i.e. statistical parameters, in time-domain analysis technique have been calculated to extract useful features from acoustic emission signals. These feature vectors are used as the input feature of an neural network to classify and detect bearing defects. As a results, the detection of bearing defect conditions could be sucessfully performed by using an neural network with statistical parameters of acoustic emission signals.

  • PDF

2D Shape Recognition System Using Fuzzy Weighted Mean by Statistical Information

  • Woo, Young-Woon;Han, Soo-Whan
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2008년도 제39차 동계학술발표논문집 16권2호
    • /
    • pp.49-54
    • /
    • 2009
  • A fuzzy weighted mean method on a 2D shape recognition system is introduced in this paper. The bispectrum based on third order cumulant is applied to the contour sequence of each image for the extraction of a feature vector. This bispectral feature vector, which is invariant to shape translation, rotation and scale, represents a 2D planar image. However, to obtain the best performance, it should be considered certain criterion on the calculation of weights for the fuzzy weighted mean method. Therefore, a new method to calculate weights using means by differences of feature values and their variances with the maximum distance from differences of feature values. is developed. In the experiments, the recognition results with fifteen dimensional bispectral feature vectors, which are extracted from 11.808 aircraft images based on eight different styles of reference images, are compared and analyzed.

  • PDF