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Abstract 
For text categorization task, distinctive text features selection is important due to feature space high 
dimensionality. It is important to decrease the feature space dimension to decrease processing time and 
increase accuracy. In the current study, for text categorization task, we introduce a novel statistical feature 
selection approach. This approach measures the term distribution in all collection documents, the term 
distribution in a certain category and the term distribution in a certain class relative to other classes. The 
proposed method results show its superiority over the traditional feature selection methods. 
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1. Introduction 

Text classification (categorization) may be considered as one of the most interesting research points 
due to the necessity to categorize and organize the growing number of electronic texts on the internet. 
Normally, text categorization includes feature extraction step and a classifier which performs the 
categorization process based on labeled data. Text categorization has been exploited in some 
applications such as spam e-mail filtering [1,2], topic detection [3], web page categorization [4-6] and 
author identification [7,8]. To represent a document, a multi-dimensional feature vector is used. A 
weighted value such as TF.IDF is used to represent each dimension. Therefore many (may tend to be 
thousands) features are created for a certain text collection. Excessive number of features degrades 
classification accuracy and increase computational time. Hence, feature selection is a very essential 
phase in text classification task to improve the accuracy and speed up the computation. For feature 
selection, there are three approaches: filters, wrappers, and embedded approaches. Filters approach is 
computationally fast. It selects features that have the highest score values [9]. Wrappers approach 
evaluates features based on a certain search algorithm and learning model [10,11]. Compared with 
Filters approach, this approach is computationally expensive. Embedded approach integrates feature 
selection step into classifier training step. This approach is computationally less intensive than wrappers 
approach [9,12]. 
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A traditional text categorization paradigm includes preprocessing step, extraction of features, 
selection of features, and finally categorization phase. The preprocessing step normally includes 
tokenization, lowercase conversion, removing of stop words, and stemming. Using the bag-of-words 
approach, the feature extraction phase normally utilizes the vector space model [13-15]. Applying of 
stemming and stop word removal is used to decrease the feature vector dimensionality and increase the 
efficiency of the text classification task. In the classification step, classification models are used. Labeled 
documents are exploited to train the classification model, then the learned model is exploited to classify 
the unlabeled documents [16,17]. Support vector machine (SVM) [14,18] and naïve Bayes (NB) 
classifier [19,20] have been exploited in the text categorization field. 

In the literature, there are many researches utilized feature selection paradigm for text categorization 
task. Feng et al. [21] utilized latent selection augmented naïve Bayes classifier for feature subset 
selection. In this method, the global selection index could be factorized to each local selection index. 
They could calculate the LSI for feature evaluation based on conjugate priors. By LSIs thresholding, the 
feature subset selection models could be pruned. Then by single feature model averages percentage 
product, the classifier could be achieved. This approach provided competitive results if compared with 
SVM classifier. 

The feature selection method that is based on meaning measure was proposed by Tutkan et al. [22]. 
From Gestalt theory of human perception, this method is based on the Helmholtz principle. Based on 
this approach, a meaningfulness score value is assigned to important terms and used for text 
classification task in supervised and unsupervised manner. This approach performance is comparable 
with many common feature selection approaches performance. 

Based on a term relative document frequencies in both negative and positive categories to find out a 
term rank, Rehman et al. [23] proposed a normalized difference measure method. Reasonable results 
have been achieved. 

In [24], to eliminate redundant terms, the authors proposed to take the interactions of words into 
account. Hence, they proposed a feature selection method of two-stages, that employs a feature ranking 
as a first stage and a feature subset selection method as a second stage. When this approach 
performance is evaluated based on balanced error rate, this approach results are comparable with the 
results of bi-normal separation + Markov blanket filter and information gain + Markov blanket filter. 

Seijo-Pardo et al. [25] provided homogeneous and heterogeneous approaches. In homogeneous case, 
the authors distributed the dataset over several nodes and used the same feature selection algorithm 
with different training data. On the other hand, in heterogeneous case with the same training data, they 
used different feature selection algorithms. SVM as a classifier was used in testing which provided 
comparable performance with individual feature selection algorithms. 

Part-of-speech and unigram-based feature sets were exploited for sentiment analysis in [26]. For 
feature ranking, five algorithms were employed to create feature vector. Then, to get a new feature 
vector, an ordinal-based integration of different feature vectors was proposed. The results of the part-
of-speech patterns were better than that of unigram-based features. 

The work of Lu et al. [27] exploited particle swarm optimization algorithm based on functional 
inertia weight and constant constriction factor to optimize feature selection algorithms. Then, 
asynchronously improved PSO and synchronously improved PSO models are proposed based on both 
functional constriction factor and functional inertia weight. For text categorization task, 
asynchronously improved PSO model achieved best results. 
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We have little works which handle feature sub-set selection problem for Arabic language text 
categorization tasks. Syiam et al. [28] have investigated the effect of some feature sub-set selection with 
Rocchio and kNN classifiers. They found that the use of any of those feature sub-set selection metrics 
separately provided close results for the Arabic text classification tasks. However, they have not 
exploited support vector machine classifier that is already considered to be superior to other classifiers. 

Most of the other Arabic text classification works [29-32] have used feature sub-set selection metrics 
without any feature sub-set selection comparison. On the other hand, [33] investigated the effect of 
(Ngl, Gss score, Or, Ig, Df, and Chi) features based on support vector machine classifier for Arabic text 
classification and found that Chi provides good results using macro-averaging F1 measure, and macro-
averaging recall. However, Ngl and Chi provide better results using macro-averaging precision. 

In this study, we propose a novel filter based feature selection approach for text categorization. Our 
new approach selects distinctive text features and eliminates uninformative ones. Our approach is 
compared with some filter based methods such as mutual information, X2 statistic, odds ratio, 
information gain, Gini index and weighted log likelihood ratio. We established the comparisons based 
on different datasets to be able to observe our approach effectiveness under different conditions. The 
experimental results proved that our approach provides good performance compared to the above-
mentioned methods in terms of processing time, rate of dimension reduction and classification 
accuracy. 

This manuscript is organized as follows: Section 2 describes the comparable feature selection 
approaches. Section 3 shows the proposed approach. Section 4 provides the results. Finally, Section 5 
provides the conclusion of this work and the possible future works. 

 
 

2. Traditional Feature Selection Approaches 

For the distinctive text features selection in text categorization, there are many filter based techniques. 
Of these approaches, mutual information, chi square, odds ratio, Gini index, information gain, and 
weighted log likelihood ratio have been exploited [34-37]. 

 
2.1 Mutual Information 
 

Depending on mutual information (MI), Deng et al. [38] and Church and Hanks [39] created a term 
weighting. Given term ti and document set Dc (set of documents in a specific category), the MI between 
them is calculated as follows: 

 
����� ,��� = �	


����,���

�(��)×�(��)
                      (1) 

 
The MI term weighting could be calculated as: 
 

����� ,��� ≈ �	

��(��)
|	�	|	

�(��)	
|	�	| ×

��
|	�	|

= �	
 	�(��)×|	�	|

�(��)	×	�
                                                 (2) 

 
nc is the number of documents in class (c), �(��) is the number of documents that contain term (ti) in all 
classes, nc(ti) is the number of documents which belong to class (c) and contain the term (ti), and | D | = 
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the training corpus total number of documents. 
The MI term weighting is given as: 
  

����(��) = max
�
	{����� ,���}                                                         (3) 

 
2.2 X2 Statistic 
 

CHI (X2 statistic) specifies the independence lack between two random variables (Dc and ti) [38,40]. 
The X2 statistic between term ti and document set Dc associated with a certain class (c) is given as 
follows: 

 

������ ,��	� =
|	�	|×[(	�(��)×	����	
��	������×	���	
�]


[	������	���	
�]×�	�������	����	
��×[	������	������]×[	���	
��	����	
�]
                              (4) 

 
With  ��̅���� is the documents number that are not belonging to class (c) and contain (ti). ������� is the 

documents number which belong to class (c) but do not contain (ti). ��̅�����  is the documents number 
which neither belong to class (c) nor contain term (ti). 

Depending on CHI statistic, the term weighting is calculated as: 
 

�����(��) = max
�
	{������ ,���}                                    (5) 

 
2.3 Odds Ratio 
 

In information retrieval, odds ratio (OR) is exploited [38,39,41]. In text categorization, to categorize 
documents, we use appearance of words as feature parameters. Given a term (ti) and documents set 
associated with a specific class Dc, the odds ratio is calculated as: 
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                                                     (7) 

 
Based on OR, the term weighting is calculated as: 
 

����(��) = max
�
		{����� ,���}                                                 (8) 

 
2.4 Information Gain 
 

To make the right categorization decision on any category, information gain (IG) is exploited to 
measure the amount of information associated with the absence or presence of a term [42]. Information 
Gain for a term �� is given as in the following formula: 
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With, �(���) and �(��) are the probabilities of absence and presence of term ��  ,�	
�� is class �� 
probability, ����|���� and ����|��� are the conditional probabilities of the category �� given absence and 
presence of the term ��, respectively and M is the number of classes. 

 
��� (��) = ������                                                                      (11) 

 
2.5 Gini Index 
 

In decision trees, to find the best split, Gini Index (GI) is used [34]. GI for a term ti is given as in the 
following formula: 

 

������ = ∑ ����|���
!
����|���

!
	�

��� ≈ ∑ (
(	�����|�|)


	������
)!�                      (12) 

 
With ����|���  is the term ��  probability given category 	�� , ����|���	is class ��  probability given 

term	��. 
 

�� �(��) = ������                                                           (13) 
 

2.6 Weighted Log Likelihood Ratio 
 

For text categorization, weighted log likelihood ratio (WLLR) is effective [38,43]. For a term (ti) and a 
set of documents Dc associated with a certain class c, the WLLR is calculated as: 

 

����(�� ,��	) = ����|����	

����|���

����|�������
                                          (14) 
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	������	�
                                            (15) 

 
Based on WLLR, the term weighting is calculated as: 
 

��"##�(��) = max
�
						{������� ,���} 	                                              (16) 

 
 

3. The Proposed Approach 

3.1 The Proposed Feature Selection Method 
 

A good filter for feature selection must be able to assign low score values to non-discriminative terms 
to be filtered out and assign high score values to discriminative terms. The following proposed formula 
might be exploited to rank text terms based on their discrimination ability for classification task: 
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The term 	���	

�

	�
 in the denominator of the above formula decreases the weight score value of a term 

which is rarely appearing in a certain category and is not appearing in the rest categories. The term 
	������

�	�		�
 in the denominator of the above formula is used to decrease the weight score values of the terms 

that appear in all classes. The term 	�(��)
	�

 in the nominator of the above formula is used to increase the 

weight score values of the terms that appear in the most of a certain class documents. The term 	�(��)
�����

 in 

the nominator of the above formula is used to increase score values of the terms that appear in the most 

of a certain class documents while rarely appear in the rest of class documents. The term 	�(��)
	�

 provides 

the distribution of the term in all documents of a certain class, whereas the term 	�(��)
�����

 gives the 

distribution of the term in a specific category relative to other classes. The term weighting based on the 
proposed approach is calculated as: 

 
��$%&(��) = max

�
						{�$%&��� ,���} 	     (18) 

 
All terms are ranked based on the above formula. 
 

3.2 Decision Tree Classifier (DTC) 
 

In decision tree, categories are consecutively rejected till we reach an accepted category [38]. Each 
class corresponds to unique region in the feature space. Binary classification tree is the most commonly 
exploited one. In binary classification tree, through sequence of yes/no decisions along nodes path, an 
unknown feature vector is assigned to a specific category. At any node, the splitting rule is to provide as 
much decrease in node impurity as possible. To define impurity, we exploit entropy that may be 
calculated as: 

  
���� = −∑ ����|���	
!����|��	�

���         (19) 
 

����|�� is the conditional probability that a certain feature vector associated with a certain node t 
belongs to a specific class C for j=1 to M. To perform split at a certain node Nt, NtN points are sent to 
“No” node and NtY points are sent to “Yes” node. The following formula measures the node impurity 
reduction: 

 
∆���� = ����− '��

'�
���()*�−

'��

'�
���'&�              (20) 

 
where ���'&�	���	���()*� are “No” and “Yes” node impurity respectively. Splitting process is stopped 
when we obtain a single class after a split or when the node impurity highest decrease is less than a 
specific threshold. A class assignment is considered for a leaf node. We consider the majority rule to 
assign a leaf to a specific category that has maximum number of vectors. 
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3.3 Multi-Class Support Vector Machine Classifier (MSVM) 
 

For binary classification tasks, SVMs were originally created [44,45]. For multiclass problems, 
appropriate approach should be used. In this work, we use one class against the rest. In this approach, L 
hyper-planes are constructed. Each hyper-plane separates one class from the rest. Then an observed 
vector X is mapped to a category based on the highest generated decision function. By focusing on the 
training data, SVM tries to locate the optimal separating hyper-plane among classes. Therefore, with 
small training sets, high classification accuracy is obtained. For a binary classification task, let {xi, yi} 
represent training data, yi ∈ {-1, +1}, i = 1,2,…, N., N = number of training data. yi = +1 and -1 for 
classes ω1 and ω2 respectively. With bias w0, assume a vector w can separate the categories without error: 

 
f (x) = w.x + w0 = 0           (21) 

 
To find this hyper-plane, the condition yi (w.xi + w0 ) −1 ≥ 0 should be satisfied. The vectors are 

located on two hyper-planes that are parallel to the optimal and calculated as: 
 

w.xi + w0 = ±1          (22)  
 
Then the margin may be calculated as: !

||+||
. We may find the optimal hyper-plane from the following 

formula: 
 

��������	 �
!
|| ||!                   (23) 

 
This problem may be solved using Lagrangian formula as follows: 
 

��!�����	 ∑ "�'
��� −

�

!
∑ "�'
�,��� "�#�#�(!� . !�)                       (24) 

 
Subject to ∑ "�'

��� #� = 0	���	"� ≥ 0, � = 1,2, …$, since "� is Lagrange multiplier. Then the optimal 
function becomes: 

 
%�!� = ∑ λ,#��∈- �!� . !�+ .                                            (25) 

 
with S is a training data subset for nonzero Lagrange multipliers. A cost function is used to combine the 
minimization of error criteria and the maximization of margin by exploiting a set of variables ξi. The 
cost function can be calculated as: 

 

��������	&� , ., ξ� =
�

!
'| |'

!
+ � ∑ ξ�

'
���                            (26) 

 
Then the vectors inner product in the mapping space may be achieved using the function: 
 

∅�!�∅��� = )(!, �)                           (27) 
 
)(!, �) is the kernel function. We have exploited polynomial kernel function as follows: 
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)�!� , !�� = (*. !�
/!� + +)0 , * > 0                                                         (28) 

 
where d, γ, & r are kernel function parameters. Then the dual optimization task may be calculated as: 

 
��!�����	 ∑ "�'

��� −
�

!
∑ "�'
�,��� "�#�#�)(!� . !�)                                  (29) 

 
Subject to   ∑ λ,

1
,�� y,=0 and "� ≥ 0, � = 1.2… .$. Then the final classifier formula is defined as: 

 
%�!� = ∑ "���- #�)�!�!�+ .                                                           (30) 

 
The process of classification depends upon one against others based on the above formula. 
 
 

4. Experimental Results 

4.1 Training and Testing Data 
 

In this work, two data sets have been exploited to measure the proposed approach performance. The 
first dataset is Reuters-21578 collection which is an imbalanced (different documents number in each 
class) data set. Reuter’s categories have been manually classified into 135 subclasses. We used the ten 
most frequent categories (Wheat, Trade, Ship, Money-fx, Interest, Grain, Earn, Crude, Corn, and 
Acquisition). The second dataset is the 20 Newsgroups collection which is a balanced (number of 
documents per category are equal) dataset. This corpus contains 18,828 documents in 20 different 
categories. 

Preprocessing step is established to make the two datasets suitable for experiments. Stop-word 
removal (e.g., conjunctions, prepositions, articles, etc.), lowercase conversion (since uppercase and 
lowercase forms of words are assumed to have no difference), and stemming (since derived words are 
semantically similar) to their stem forms are considered. 

 
4.2 Performance Measure 
    

To measure the overall performance, micro-average and macro-average of F-measure are used. 
Firstly, precision, recall and F-measure are defined as follows: 

 
� =

�������

��������	��
�
  ,     � =

�������

���������
��

�
  ,     � =

�.�.�

���
                                  (31) 

 
The macro-average F measure (FM) is defined as follows: 
 

,� =
�

2
∑ ,(�3)2
3��                               (32) 

 
The micro-average F measure (,4) is defined as follows: 
 

�
�
=

�.��
.��

�����
          (33) 

 
where �4 and �4 are recall and precision over all the categorization decisions in the entire dataset 
rather than individual categories. 
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4.3 Performance Analysis 
 

In these experiments, we vary features number based on each selection method. Then we fed the 
feature vectors to DTC and MSVM classifiers. Results based on micro and macro F score values are 
shown in Tables 1 and 2 for each dataset. From Tables 1 and 2, the proposed approach results 
outperform most of the other approach results in both datasets. 

 
Table 1. Performance measure for Reuters collection based on DTC and MSVM classifiers for different 
feature parameter size 

Performance 
criteria 

Feature parameter size
50 100 200 300 400 500 

�
�

�
�

�
� �

�
�
� �

�
�
�

�
�

�
�

�
� �

� �
� 

DTC             
MI 56.8 80.9 57.7 81.8 57.8 81.9 57.9 82.4 58.1 82.6 58.3 82.4 

CHI 56.5 80.3 56.7 81.4 57.1 81.6 57.3 82.5 57.4 82.7 57.7 82.3 
OR 57.8 81.2 57.6 81.6 57.5 82.7 57.7 83.1 57.6 83.3 57.8 82.9 
IG 58.1 81.4 58.2 81.5 58.4 81.8 58.8 82.6 58.9 83.1 59.4 82.7 
GI 58.3 81.7 58.5 82.1 58.7 81.9 58.6 82.7 58.8 83.2 59.1 83.1 

WLLR 57.2 80.5 57.6 81.4 58.2 82.0 58.7 82.3 58.5 82.8 58.7 82.6 
pro 60.8 82.3 59.9 82.4 60.3 82.7 59.8 83.2 60.6 83.5 60.7 82.8 

MSVM     
MI 57.6 83.3 59.7 84.8 61.6 84.7 61.9 84.6 61.7 84.8 61.6 84.5 

CHI 57.4 83.1 60.3 84.5 62.5 84.6 63.4 84.4 63.2 84.5 63.3 84.3 
OR 58.7 83.5 61.4 84.7 63.3 84.8 64.2 84.7 63.9 84.6 63.8 84.4 
IG 59.2 83.7 62.3 85.1 64.2 85.3 64.9 85.2 64.7 85.3 64.8 85.4 
GI 59.3 83.8 62.4 85.3 64.5 85.4 65.3 85.5 65.2 85.4 65.3 85.3 

WLLR 58.3 82.9 61.8 84.5 63.9 84.7 64.7 84.6 64.5 84.7 64.3 84.6 
pro 61.7 83.9 62.6 85.6 64.8 85.8 65.6 85.6 65.3 85.7 65.2 85.5 

 
Table 2. Performance measure for Newsgroups collection based on DTC and MSVM classifiers for 
different feature parameter size 

Performance 
criteria 

Feature parameter size
50 100 200 300 400 500 

�
�

�
�

�
�

�
�

�
� �

�
�
�

�
�

�
�

�
� �

� �
� 

DTC     
MI 95.9 96.3 97.2 96.8 97.3 97.4 97.4 97.2 97.2 97.3 97.1 96.8 

CHI 96.5 96.4 97.3 97.1 97.5 97.5 97.4 97.3 97.3 97.5 96.8 96.9 
OR 96.6 96.5 97.5 96.8 97.6 97.4 97.5 97.6 97.4 97.6 96.9 97.4 
IG 96.7 96.7 97.3 97.4 97.5 97.6 97.5 97.4 97.3 97.6 97.2 97.3 
GI 96.8 97.2 97.6 97.5 97.6 97.5 97.6 97.5 97.5 97.5 97.4 97.6 

WLLR 97.7 97.4 97.7 97.5 97.7 97.8 97.7 97.6 97.6 97.8 97.5 97.6 
pro 96.9 97.5 97.5 97.7 97.9 97.7 98.1 98.0 97.9 97.8 97.8 97.8 

MSVM     
MI 97.4 97.3 97.3 97.4 97.3 97.4 97.3 97.5 97.4 97.4 97.3 97.2 

CHI 97.5 97.4 97.4 97.5 97.4 97.6 97.3 97.7 97.3 97.7 97.3 97.6 
OR 97.6 97.5 97.6 97.6 97.5 97.5 97.4 97.6 97.5 97.7 97.4 97.5 
IG 97.7 97.7 97.7 97.7 97.7 97.7 97.6 97.6 97.7 97.5 97.6 97.4 
GI 97.7 97.8 97.6 97.7 97.5 97.6 97.6 97.7 97.6 97.6 97.7 97.6 

WLLR 97.7 97.6 97.6 97.7 97.7 97.7 97.8 97.8 97.7 97.7 97.6 97.6 
pro 97.9 97.8 97.8 97.7 97.9 98.1 98.0 97.9 97.8 97.9 97.7 97.8 
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4.4 Discussion 
 

As shown in the previously mentioned results, the most of the proposed approach results are better 
than other approaches result in terms of Macro-F and Micro-F score values. For a very small feature 
parameter size, the processing time is low. On the other hand, the accuracies for moderate feature 
parameter size are better. For a large feature parameter size, the results are lower or almost the same as 
moderate feature parameter size. The benefit of decreasing feature parameter size is to reduce the 
processing time as well as increase the system efficiency based on accuracy. The most effective text 
features have been selected in the proposed method to achieve better results. The results of MSVM 
classifier are slightly better than the results of DTC classifier in both datasets. 

 
 

5. Conclusions & Future Works 

In this work, a novel statistical feature selection method for text classification was presented. The 
proposed method specified distinctive text features and eliminates uninformative ones. The proposed 
approach was compared with some successful filter based methods such as mutual information, X2 
statistic, odds ratio, information gain, Gini Index, and weighted log likelihood ratio. Two datasets have 
been used for comparison; hence performance of our approach could be measured under different 
conditions. The experimental results showed that our approach provides a competitive performance 
compared with other mentioned methods in terms of processing time, rate of dimension reduction, and 
classification accuracy. 

In the future work, enhancement of the proposed approach will be considered with other successful 
methods to create a hybrid model. 
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