• 제목/요약/키워드: Statistical distributions

검색결과 1,007건 처리시간 0.032초

$45^{\circ}$ 圓形 衝突噴流의 統計學的 亂流特性 硏究 (Study on the Statistical Turbulent Characteristics of $45^{\circ}$ Circular Cross Jet Flow)

  • 노병준;김장권
    • 대한기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.110-120
    • /
    • 1986
  • 본 45。충돌분사에서는 충돌분류의 평균속도, 난류강도, 난류전단응력등을 측정분석하여 기 연구발표한 자료를 토대로 하여 난류의 충돌배합이 활발히 일어나는 영역(X/X$_{0}$=2,3,4)에서 충돌분류의 특성을 통계학적으로 측정연구코저 한다. 따라서 각방향으로 발생하는 난류성분을 Gauss의 확률분포식과 비교검토하고, 2차원 결합확률정도선도를 측정도시하여 2방향의 난류성분들의 결합난동형상을 온라인 컴퓨 터 시스템에 의하여 분석할 계획이다. 또한 난류성분의 고차모멘트를 측정하여 비대칭도와 편평도등도 연구 구명코저 한다.다.

탈퇴원인별 상이한 소수연령 분포에서 다중탈퇴율 계산과 변액연금에 응용 (Decrement Models with an Application to Variable Annuities under Fractional Age Distributions)

  • 이항석
    • Communications for Statistical Applications and Methods
    • /
    • 제16권1호
    • /
    • pp.85-102
    • /
    • 2009
  • 전통적인 생명보험 상품뿐만 아니라 최근에 많이 판매가 이루어지고 있는 변액연금에 이르기까지 보험료와 준비금의 계산 및 리스크 관리에 다중탈퇴율이 많이 사용된다. 보험의 탈퇴현상은 특정 연령에서 1년이내 임의 시점에 탈퇴가 발생할 확률을 필요로 하므로 이러한 현상을 나타내는 소수연령 (Fractional Age)에 대한 분포의 가정이 탈퇴율의 계산에 필수적인 요소이다. Lee (2008b)는 절대탈퇴율에서 다중탈퇴율로의 전환 공식을 UDD 가정대신에 탈퇴 원인별 동일한 소수연령 분포을 이용하여 유도하였다. 본 논문에서는 탈퇴 원인별로 소수연령 분포가 상이한 가정에서 절대탈퇴율에서 다중탈퇴율로의 전환 공식을 유도한다. 특히 해약률의 경우 해약 발생을 연속적이지 않고 이산적으로 다루는 경우가 실무에서 많으므로 사망 또는 장애의 발생과 다른 형태인 계단형 소수연령 분포함수가 필요하여 상이한 소수연령 분포에서 다중탈퇴율을 계산하는 공식을 제시한다. 또한 유도된 공식을 이용하여 적립금과 최소보증액의 수준에 따라서 달라지는 변액연금의 해약 현상을 반영하기 위하여 동적해약률(dynamic lapse rate)이 적용된 다중탈퇴율의 전환 과정을 설명한다.

Bayesian Methods for Generalized Linear Models

  • Paul E. Green;Kim, Dae-Hak
    • Communications for Statistical Applications and Methods
    • /
    • 제6권2호
    • /
    • pp.523-532
    • /
    • 1999
  • Generalized linear models have various applications for data arising from many kinds of statistical studies. Although the response variable is generally assumed to be generated from a wide class of probability distributions we focus on count data that are most often analyzed using binomial models for proportions or poisson models for rates. The methods and results presented here also apply to many other categorical data models in general due to the relationship between multinomial and poisson sampling. The novelty of the approach suggested here is that all conditional distribution s can be specified directly so that staraightforward Gibbs sampling is possible. The prior distribution consists of two stages. We rely on a normal nonconjugate prior at the first stage and a vague prior for hyperparameters at the second stage. The methods are demonstrated with an illustrative example using data collected by Rosenkranz and raftery(1994) concerning the number of hospital admissions due to back pain in Washington state.

  • PDF

New Family of the Exponential Distributions for Modeling Skewed Semicircular Data

  • Kim, Hyoung-Moon
    • 응용통계연구
    • /
    • 제22권1호
    • /
    • pp.205-220
    • /
    • 2009
  • For modeling skewed semicircular data, we derive new family of the exponential distributions. We extend it to the l-axial exponential distribution by a transformation for modeling any arc of arbitrary length. It is straightforward to generate samples from the f-axial exponential distribution. Asymptotic result reveals two things. The first is that linear exponential distribution can be used to approximate the l-axial exponential distribution. The second is that the l-axial exponential distribution has the asymptotic memoryless property though it doesn't have strict memoryless property. Some trigonometric moments are also derived in closed forms. Maximum likelihood estimation is adopted to estimate model parameters. Some hypotheses tests and confidence intervals are also developed. The Kolmogorov-Smirnov test is adopted for goodness of fit test of the l-axial exponential distribution. We finally obtain a bivariate version of two kinds of the l-axial exponential distributions.

Estimating Discriminatory Power with Non-normality and a Small Number of Defaults

  • Hong, C.S.;Kim, H.J.;Lee, J.L.
    • 응용통계연구
    • /
    • 제25권5호
    • /
    • pp.803-811
    • /
    • 2012
  • For credit evaluation models, we extend the study of discriminatory power based on AUC obtained from a ROC curve when the number of defaults is small and distribution functions of the defaults and non-defaults are normal distributions. Since distribution functions do not satisfy normality in real world, the distribution functions of the defaults and non-defaults are assumed as normal mixture distributions based on results that the normal mixture could be better fitted than other distribution estimation methods for non-normal data. By using several AUC statistics, the discriminatory power under such a circumstance is explored and compared with those of normal distributions.

MULTIPLE EMISSION STATES IN ACTIVE GALACTIC NUCLEI

  • Park, Jong-Ho;Trippe, Sascha
    • 천문학회지
    • /
    • 제45권6호
    • /
    • pp.147-156
    • /
    • 2012
  • We present a test of the emission statistics of active galactic nuclei (AGN), probing the connection between the red-noise temporal power spectra and multi-modal flux distributions known from observations. We simulate AGN lightcurves under the assumption of uniform stochastic emission processes for different power-law indices of their respective power spectra. For sufficiently shallow slopes (power-law indices (${\beta}{\leq}1$), the flux distributions (histograms) of the resulting lightcurves are approximately Gaussian. For indices corresponding to steeper slopes (${\beta}{\geq}1$), the flux distributions become multi-modal. This finding disagrees systematically with results of recent mm/radio observations. Accordingly, we conclude that the emission from AGN does not necessarily originate from uniform stochastic processes even if their power spectra suggest otherwise. Possible mechanisms include transitions between different activity states and/or the presence of multiple, spatially disconnected, emission regions.

Bivariate Dagum distribution

  • Muhammed, Hiba Z.
    • International Journal of Reliability and Applications
    • /
    • 제18권2호
    • /
    • pp.65-82
    • /
    • 2017
  • Abstract. Camilo Dagum proposed several variants of a new model for the size distribution of personal income in a series of papers in the 1970s. He traced the genesis of the Dagum distributions in applied economics and points out parallel developments in several branches of the applied statistics literature. The main aim of this paper is to define a bivariate Dagum distribution so that the marginals have Dagum distributions. It is observed that the joint probability density function and the joint cumulative distribution function can be expressed in closed forms. Several properties of this distribution such as marginals, conditional distributions and product moments have been discussed. The maximum likelihood estimates for the unknown parameters of this distribution and their approximate variance-covariance matrix have been obtained. Some simulations have been performed to see the performances of the MLEs. One data analysis has been performed for illustrative purpose.

  • PDF

엔트로피 이론을 이용한 사전 확률 분포함수의 추정 (Prior distributions using the entropy principles)

  • Lee, Jung-Jin;Shin, Wan-Seon
    • 응용통계연구
    • /
    • 제3권2호
    • /
    • pp.91-105
    • /
    • 1990
  • 베이시안 결정론에서 사전 확률 분포함수는 표본을 추출하기 이전에 추정하여야 한다. 대개 는 분포함수군을 먼저 선택한 후, 그 중 하나를 결정자의 경험을 통하여 선택한다. 이러한 주관적인 사전 확률 분포함수의 선택방법이 베이시안 결정론에 대한 주요비판이 항상 되어 왔다. 본 논문에서는 최대 엔트로피 이론을 이용하여 우리 주변의 의사결정에 많이 이용되 는 정보들에 관한 객관적인 사전 확률 분포함수들을 구하였다. 그 결과는 히스토그램 형태 의 분포함수가 된다. 그러나 사전 정보가 많은 경우에는 최대 엔트로피 모형의 해를 구하기 위하여 복잡한 비선형 연립방정식을 풀어야 하는데, 구체적인 형태의 함수를 구하지 못하는 경우가 대부분이다. 이 때에는 초소의 크로스 엔트로피 모형을 이용하여 사전확률 분포함수 를 구하는 것이 편리하다. 그밖에 엔트로피 이론으로 구한 사전확률 분포함수의 확률적 수 렴성을 증명하였다.

  • PDF

ON THE EXISTENCE OF THE TWEEDIE POWER PARAMETER IMPLICIT ESTIMATOR

  • Ghribi, Abdelaziz;Hassin, Aymen;Masmoudi, Afif
    • 대한수학회보
    • /
    • 제59권4호
    • /
    • pp.979-991
    • /
    • 2022
  • A special class of exponential dispersion models is the class of Tweedie distributions. This class is very significant in statistical modeling as it includes a number of familiar distributions such as Gaussian, Gamma and compound Poisson. A Tweedie distribution has a power parameter p, a mean m and a dispersion parameter 𝜙. The value of the power parameter lies in identifying the corresponding distribution of the Tweedie family. The basic objective of this research work resides in investigating the existence of the implicit estimator of the power parameter of the Tweedie distribution. A necessary and sufficient condition on the mean parameter m, suggesting that the implicit estimator of the power parameter p exists, was established and we provided some asymptotic properties of this estimator.

UNIFORM DISTRIBUTIONS ON CURVES AND QUANTIZATION

  • Joseph Rosenblatt;Mrinal Kanti Roychowdhury
    • 대한수학회논문집
    • /
    • 제38권2호
    • /
    • pp.431-450
    • /
    • 2023
  • The basic goal of quantization for probability distribution is to reduce the number of values, which is typically uncountable, describing a probability distribution to some finite set and thus to make an approximation of a continuous probability distribution by a discrete distribution. It has broad application in signal processing and data compression. In this paper, first we define the uniform distributions on different curves such as a line segment, a circle, and the boundary of an equilateral triangle. Then, we give the exact formulas to determine the optimal sets of n-means and the nth quantization errors for different values of n with respect to the uniform distributions defined on the curves. In each case, we further calculate the quantization dimension and show that it is equal to the dimension of the object; and the quantization coefficient exists as a finite positive number. This supports the well-known result of Bucklew and Wise [2], which says that for a Borel probability measure P with non-vanishing absolutely continuous part the quantization coefficient exists as a finite positive number.