• Title/Summary/Keyword: Statistical distributions

Search Result 1,007, Processing Time 0.028 seconds

Transmuted new generalized Weibull distribution for lifetime modeling

  • Khan, Muhammad Shuaib;King, Robert;Hudson, Irene Lena
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.5
    • /
    • pp.363-383
    • /
    • 2016
  • The Weibull family of lifetime distributions play a fundamental role in reliability engineering and life testing problems. This paper investigates the potential usefulness of transmuted new generalized Weibull (TNGW) distribution for modeling lifetime data. This distribution is an important competitive model that contains twenty-three lifetime distributions as special cases. We can obtain the TNGW distribution using the quadratic rank transmutation map (QRTM) technique. We derive the analytical shapes of the density and hazard functions for graphical illustrations. In addition, we explore some mathematical properties of the TNGW model including expressions for the quantile function, moments, entropies, mean deviation, Bonferroni and Lorenz curves and the moments of order statistics. The method of maximum likelihood is used to estimate the model parameters. Finally the applicability of the TNGW model is presented using nicotine in cigarettes data for illustration.

Bivariate odd-log-logistic-Weibull regression model for oral health-related quality of life

  • Cruz, Jose N. da;Ortega, Edwin M.M.;Cordeiro, Gauss M.;Suzuki, Adriano K.;Mialhe, Fabio L.
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.3
    • /
    • pp.271-290
    • /
    • 2017
  • We study a bivariate response regression model with arbitrary marginal distributions and joint distributions using Frank and Clayton's families of copulas. The proposed model is used for fitting dependent bivariate data with explanatory variables using the log-odd log-logistic Weibull distribution. We consider likelihood inferential procedures based on constrained parameters. For different parameter settings and sample sizes, various simulation studies are performed and compared to the performance of the bivariate odd-log-logistic-Weibull regression model. Sensitivity analysis methods (such as local and total influence) are investigated under three perturbation schemes. The methodology is illustrated in a study to assess changes on schoolchildren's oral health-related quality of life (OHRQoL) in a follow-up exam after three years and to evaluate the impact of caries incidence on the OHRQoL of adolescents.

Noninformative Priors for the Stress-Strength Reliability in the Generalized Exponential Distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.4
    • /
    • pp.467-475
    • /
    • 2011
  • This paper develops the noninformative priors for the stress-strength reliability from one parameter generalized exponential distributions. When this reliability is a parameter of interest, we develop the first, second order matching priors, reference priors in its order of importance in parameters and Jeffreys' prior. We reveal that these probability matching priors are not the alternative coverage probability matching prior or a highest posterior density matching prior, a cumulative distribution function matching prior. In addition, we reveal that the one-at-a-time reference prior and Jeffreys' prior are actually a second order matching prior. We show that the proposed reference prior matches the target coverage probabilities in a frequentist sense through a simulation study and a provided example.

Characterization of the Asymptotic Distributions of Certain Eigenvalues in a General Setting

  • Hwang, Chang-Ha
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.1
    • /
    • pp.13-32
    • /
    • 1994
  • Let A(n) and B(n) be sequences of $m \times m$ random matrices with a joint asymptotic distribution as $n \to \infty$. The asymptotic distribution of the ordered roots of $$\mid$A(n) - f B(n)$\mid$ = 0$ depends on the multiplicity of the roots of a determinatal equation involving parameter roots. This paper treats the asymptotic distribution of the roots of the above determinantal equation in the case where some of parameter roots are zero. Furthermore, we apply our results to deriving the asymptotic distributions of the eigenvalues of the MANOVA matrix in the noncentral case when the underlying distribution is not multivariate normal and some parameter roots are zero.

  • PDF

Uniformly Minimum Variance Unbiased Estimation for Distributions with Support Dependign on Two Parameters

  • Hong, Chong-Sun;Park, Hyun-Jip;Lee, Chong-Cheol
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.1
    • /
    • pp.45-64
    • /
    • 1995
  • When a random sample is taken from a certain class of discrete and continuous distributions whose support depend on two parameters, we could find that there exists the complete and sufficient statistic for parameters which belong to a certain class, and fomulate the uniformly minimum variance unbiased estimator (UMVUE) of any estimable function. Some UMVUE's of parametric functions are illustrated for the class of the distribution. Especially, we find that the UMVUE of some estimable parametric function from the truncated normal distribution could be expressed by the version of the Mill's ratio.

  • PDF

Visualizations for Matched Pairs Models Using Modified Correspondence Analysis

  • Lee, Chanyoon;Choi, Yong-Seok
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.4
    • /
    • pp.275-284
    • /
    • 2014
  • Matched pairs are twice continuously measured data with the same categories. They can be represented as the square contingency tables. We can also consider symmetry and marginal homogeneity. Moreover, we can infer the matched pairs models; the symmetry model, the quasi-symmetry model, and the ordinal quasi-symmetry model. These inferences are involved in assumptions for special distributions. In this study, we visualize matched pairs models using modified correspondence analysis. Modified correspondence analysis can be used when square contingency tables are given; consequently, it is involved in the square and asymmetric correspondence matrix. This technique does not need assumptions for special distributions and is more helpful than the correspondence analysis to visualize matched pairs models.

Development of Matching Priors for P(X < Y) in Exprnential dlstributions

  • Lee, Gunhee
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.4
    • /
    • pp.421-433
    • /
    • 1998
  • In this paper, matching priors for P(X < Y) are investigated when both distributions are exponential distributions. Two recent approaches for finding noninformative priors are introduced. The first one is the verger and Bernardo's forward and backward reference priors that maximizes the expected Kullback-Liebler Divergence between posterior and prior density. The second one is the matching prior identified by matching the one sided posterior credible interval with the frequentist's desired confidence level. The general forms of the second- order matching prior are presented so that the one sided posterior credible intervals agree with the frequentist's desired confidence levels up to O(n$^{-1}$ ). The frequentist coverage probabilities of confidence sets based on several noninformative priors are compared for small sample sizes via the Monte-Carlo simulation.

  • PDF

Distance between the Distributions of the P-value and the Lower Bound of the Posterior Probability

  • Oh, Hyun-Sook
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.1
    • /
    • pp.237-249
    • /
    • 1999
  • It has been issued that the irreconcilability of the classical test for a point null and standard Bayesian formulation for testing such a point null. The infimum of the posterior probability of the null hypothesis is used as measure of evidence against the null hypothesis in Bayesian approach; here the infimum is over the family of priors on the alternative hypotheses which includes all density that are a priori reasonable. For iid observations from a multivariate normal distribution in $\textit{p}$ dimensions with an unknown mean and a covariance matrix propotional to the Identity we consider the difference and the Wolfowitz distance of the distributions of the P-value and the lower bound of the posterior probability over the family of all normal priors. The Wolfowitz distance is interpreted as the average difference of the quantiles of the two distrbutions.

  • PDF

Regression models generated by gamma random variables with long-term survivors

  • Ortega, Edwin M.M.;Cordeiro, Gauss M.;Hashimoto, Elizabeth M.;Suzuki, Adriano K.
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.1
    • /
    • pp.43-65
    • /
    • 2017
  • We propose a flexible cure rate survival model by assuming that the number of competing causes of the event of interest has the Poisson distribution and the time for the event follows the gamma-G family of distributions. The extended family of gamma-G failure-time models with long-term survivors is flexible enough to include many commonly used failure-time distributions as special cases. We consider a frequentist analysis for parameter estimation and derive appropriate matrices to assess local influence on the parameters. Further, various simulations are performed for different parameter settings, sample sizes and censoring percentages. We illustrate the performance of the proposed regression model by means of a data set from the medical area (gastric cancer).

Partially linear multivariate regression in the presence of measurement error

  • Yalaz, Secil;Tez, Mujgan
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.5
    • /
    • pp.511-521
    • /
    • 2020
  • In this paper, a partially linear multivariate model with error in the explanatory variable of the nonparametric part, and an m dimensional response variable is considered. Using the uniform consistency results found for the estimator of the nonparametric part, we derive an estimator of the parametric part. The dependence of the convergence rates on the errors distributions is examined and demonstrated that proposed estimator is asymptotically normal. In main results, both ordinary and super smooth error distributions are considered. Moreover, the derived estimators are applied to the economic behaviors of consumers. Our method handles contaminated data is founded more effectively than the semiparametric method ignores measurement errors.