• Title/Summary/Keyword: Statistical Inference

Search Result 443, Processing Time 0.022 seconds

Reject Inference of Incomplete Data Using a Normal Mixture Model

  • Song, Ju-Won
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.2
    • /
    • pp.425-433
    • /
    • 2011
  • Reject inference in credit scoring is a statistical approach to adjust for nonrandom sample bias due to rejected applicants. Function estimation approaches are based on the assumption that rejected applicants are not necessary to be included in the estimation, when the missing data mechanism is missing at random. On the other hand, the density estimation approach by using mixture models indicates that reject inference should include rejected applicants in the model. When mixture models are chosen for reject inference, it is often assumed that data follow a normal distribution. If data include missing values, an application of the normal mixture model to fully observed cases may cause another sample bias due to missing values. We extend reject inference by a multivariate normal mixture model to handle incomplete characteristic variables. A simulation study shows that inclusion of incomplete characteristic variables outperforms the function estimation approaches.

Computer Program Development for Two Populations Inference

  • Choi, Hyun-Seok;Choi, Sung-Woo;Kim, Tae-Yoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.2
    • /
    • pp.185-193
    • /
    • 2005
  • This study develops and introduces the program for letting learners study statistics in a systematic and efficient way by using Excel tools such as VBA and Macro, when they study statistical inference at two populations. This study helps learners understand the steps on statistical inference at two populations by utilizing the systematic and visual techniques.

  • PDF

A Bayesian Approach for Record Value Statistics Model Using Nonhomogeneous Poisson Process

  • Kiheon Choi;Hee chual Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.1
    • /
    • pp.259-269
    • /
    • 1997
  • Bayesian inference for a record value statistics(RVS) model of nonhomogeneous Poisson process is considered. We seal with Bayesian inference for double exponential, Gamma, Rayleigh, Gumble RVS models using Gibbs sampling and Metropolis algorithm and also explore Bayesian computation and model selection.

  • PDF

베이즈와 이산형 모형을 이용한 비율에 대한 추론 교수법의 고찰

  • 박태룡
    • Journal for History of Mathematics
    • /
    • v.13 no.1
    • /
    • pp.99-112
    • /
    • 2000
  • In this paper we discuss the teaching methods about statistical inferences. Bayesian methods have the attractive feature that statistical conclusions can be stated using the language of subjective probability. Simple methods of teaching Bayes' rule described, and these methods are illustrated for inference and prediction problems for one proportions. Also, we discuss the advantages and disadvantages of traditional and Bayesian approachs in teaching inference.

  • PDF

Likelihood Based Inference for the Shape Parameter of the Inverse Gaussian Distribution

  • Lee, Woo-Dong;Kang, Sang-Gil;Kim, Dong-Seok
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.5
    • /
    • pp.655-666
    • /
    • 2008
  • Small sample likelihood based inference for the shape parameter of the inverse Gaussian distribution is the purpose of this paper. When shape parameter is of interest, the signed log-likelihood ratio statistic and the modified signed log-likelihood ratio statistic are derived. Hsieh (1990) gave a statistical inference for the shape parameter based on an exact method. Throughout simulation, we will compare the statistical properties of the proposed statistics to the statistic given by Hsieh (1990) in term of confidence interval and power of test. We also discuss a real data example.

A Study on Analysis of Likelihood Principle and its Educational Implications (우도원리에 대한 분석과 그에 따른 교육적 시사점에 대한 연구)

  • Park, Sun Yong;Yoon, Hyoung Seok
    • The Mathematical Education
    • /
    • v.55 no.2
    • /
    • pp.193-208
    • /
    • 2016
  • This study analyzes the likelihood principle and elicits an educational implication. As a result of analysis, this study shows that Frequentist and Bayesian interpret the principle differently by assigning different role to that principle from each other. While frequentist regards the principle as 'the principle forming a basis for statistical inference using the likelihood ratio' through considering the likelihood as a direct tool for statistical inference, Bayesian looks upon the principle as 'the principle providing a basis for statistical inference using the posterior probability' by looking at the likelihood as a means for updating. Despite this distinction between two methods of statistical inference, two statistics schools get clues to compromise in a regard of using frequency prior probability. According to this result, this study suggests the statistics education that is a help to building of students' critical eye by their comparing inferences based on likelihood and posterior probability in the learning and teaching of updating process from frequency prior probability to posterior probability.

Bayesian Inference for Predicting the Default Rate Using the Power Prior

  • Kim, Seong-W.;Son, Young-Sook;Choi, Sang-A
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.685-699
    • /
    • 2006
  • Commercial banks and other related areas have developed internal models to better quantify their financial risks. Since an appropriate credit risk model plays a very important role in the risk management at financial institutions, it needs more accurate model which forecasts the credit losses, and statistical inference on that model is required. In this paper, we propose a new method for estimating a default rate. It is a Bayesian approach using the power prior which allows for incorporating of historical data to estimate the default rate. Inference on current data could be more reliable if there exist similar data based on previous studies. Ibrahim and Chen (2000) utilize these data to characterize the power prior. It allows for incorporating of historical data to estimate the parameters in the models. We demonstrate our methodologies with a real data set regarding SOHO data and also perform a simulation study.

A Study on statistical inference on IL-2 titer (IL-2 역가의 통계적 추정에 관한 연구)

  • 박래현;박석영;이석훈
    • The Korean Journal of Applied Statistics
    • /
    • v.2 no.2
    • /
    • pp.27-35
    • /
    • 1989
  • This article deals with statistical inference on Interleukin-2 titer of which the clinical applications to cancer immunotherapy and some immunodeficiency diseases have been widely tried. A Linear model and the Bayesian approach are used to explain the bioassay which performs the measurements of IL-2 activity from an patient and an inference procedure including confidence intervals for the IL-2 titer of the patient through comparision with the Standard IL-2 is suggested and a real case of example is illustrated.

  • PDF

Robust inference with order constraint in microarray study

  • Kang, Joonsung
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.5
    • /
    • pp.559-568
    • /
    • 2018
  • Gene classification can involve complex order-restricted inference. Examining gene expression pattern across groups with order-restriction makes standard statistical inference ineffective and thus, requires different methods. For this problem, Roy's union-intersection principle has some merit. The M-estimator adjusting for outlier arrays in a microarray study produces a robust test statistic with distribution-insensitive clustering of genes. The M-estimator in conjunction with a union-intersection principle provides a nonstandard robust procedure. By exact permutation distribution theory, a conditionally distribution-free test based on the proposed test statistic generates corresponding p-values in a small sample size setup. We apply a false discovery rate (FDR) as a multiple testing procedure to p-values in simulated data and real microarray data. FDR procedure for proposed test statistics controls the FDR at all levels of ${\alpha}$ and ${\pi}_0$ (the proportion of true null); however, the FDR procedure for test statistics based upon normal theory (ANOVA) fails to control FDR.

Improved Exact Inference in Logistic Regression Model

  • Kim, Donguk;Kim, Sooyeon
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.277-289
    • /
    • 2003
  • We propose modified exact inferential methods in logistic regression model. Exact conditional distribution in logistic regression model is often highly discrete, and ordinary exact inference in logistic regression is conservative, because of the discreteness of the distribution. For the exact inference in logistic regression model we utilize the modified P-value. The modified P-value can not exceed the ordinary P-value, so the test of size $\alpha$ based on the modified P-value is less conservative. The modified exact confidence interval maintains at least a fixed confidence level but tends to be much narrower. The approach inverts results of a test with a modified P-value utilizing the test statistic and table probabilities in logistic regression model.