• Title/Summary/Keyword: Static power loss

Search Result 79, Processing Time 0.027 seconds

All-optical mach-zehnder interferometric wavelength converter monolithically integrated with loss-coupled DFB probe source (Loss-Coupled DEB LD집적 Mach-Zehnder 간섭계형 파장 변환기)

  • 김현수;김종회;심은덕;백용순;김강호;권오기;오광룡
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.454-459
    • /
    • 2003
  • We report the first demonstration of 10 Gb/s wavelength conversion in a Mach-Zehnder interferometric wavelength converter monolithically integrated with a loss-coupled DFB probe source. The integrated device is fabricated using a BRS (buried ridge stripe) structure with an undoped InP clad layer on the top of a passive waveguide to reduce high propagation loss. The device exhibited a static extinction ratio of 11 dB. Good performance at 10 Gb/s is obtained with an extinction ratio of 7 dB and a power penalty of 2.8 dB at a 10$^{-9}$ bit error rate.

Development of Design Technology of Turbine Bearings for Power Plants (발전설비용 터빈베어링의 설계 기술 개발)

  • 하현천;양승헌;변형현
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.253-259
    • /
    • 1997
  • A software for design of turbine bearings has been developed based on both the theoretical analysis and experimental investigation. Static and dynamic performance, i.e. load capacity, frictional loss, temperature distribution, stiffness and damping coefficients, stability etc., can be obtained by using this software taking into account the effects of three dimensional variation of lubricant viscosity, turbulence and inlet pressure. A performance test rig was developed by self-design and technology, which was used to verify static and dynamic characteristics and to investigate the proper boundary conditions for theoretical analysis. Consequently HANJUNG has developed the self-design technology for design of turbine bearings for power plants.

  • PDF

Experiences with Simulation Software for the Analysis of Inverter Power Sources in Arc Welding Applications

  • Fischer W.;Mecke H.;Czarnecki T.K.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.731-736
    • /
    • 2001
  • Nowadays various simulation tools are widely used for the design and the analysis of power electronic converters. From the engineering point of view it is rather difficult to parameterize power semiconductor device models without the knowledge of basic physical parameters. In recent years some data sheet driven behavioral models or so called 'wizard' tools have been introduced to solve this problem. In this contribution some experiences with some user-friendly power semiconductor models will be discussed. Using special simulation test circuits it is possible to get information on the static and dynamic behavior of the parameterized models before they are applied in more complex schemes. These results can be compared with data sheets or with measurements. The application of these models for power loss analysis of inverter type arc welding power sources will be described.

  • PDF

Investigation of Nonlinear Numerical Mathematical Model of a Multiple Shaft Gas Turbine Unit

  • Kim, Soo-Yong;Valeri P. Kovalevsky
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2087-2098
    • /
    • 2003
  • The development of numerical mathematical model to calculate both the static and dynamic characteristics of a multi-shaft gas turbine consisting of a single combustion chamber, including advanced cycle components such as intercooler and regenerator is presented in this paper. The numerical mathematical model is based on the simplified assumptions that quasi-static characteristic of turbo-machine and injector is used, total pressure loss and heat transfer relation for static calculation neglecting fuel transport time delay can be employed. The supercharger power has a cubical relation to its rotating velocity. The accuracy of each calculation is confirmed by monitoring mass and energy balances with comparative calculations for different time steps of integration. The features of the studied gas turbine scheme are the starting device with compressed air volumes and injector's supercharging the air directly ahead of the combustion chamber.

50V Power MOSFET with Improved Reverse Recovery Characteristics Using an Integrated Schottky Body Diode (Schottky Body Diode를 집적하여 향상된 Reverse Recovery 특성을 가지는 50V Power MOSFET)

  • Lee, Byung-Hwa;Cho, Doo-Hyung;Kim, Kwang-Soo
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.94-100
    • /
    • 2015
  • In this paper, 50V power U-MOSFET which replace the body(PN) diode with Schottky is proposed. As already known, Schottky diode has the advantage of reduced reverse recovery loss than PN diode. Thus, the power MOSFET with integrated Schottky integrated can minimize the reverse recovery loss. The proposed Schottky body diode U-MOSFET(SU-MOS) shows reduction of reverse recovery loss with the same transfer, output characteristic and breakdown voltage. As a result, 21.09% reduction in peak reverse current, 7.68% reduction in reverse recovery time and 35% improvement in figure of merit(FOM) are observed when the Schottky width is $0.2{\mu}m$ and the Schottky barrier height is 0.8eV compared to conventional U-MOSFET(CU-MOS). The device characteristics are analyzed through the Synopsys Sentaurus TCAD tool.

Response of a frame structure on a canyon site to spatially varying ground motions

  • Bi, Kaiming;Hao, Hong;Ren, Weixin
    • Structural Engineering and Mechanics
    • /
    • v.36 no.1
    • /
    • pp.111-127
    • /
    • 2010
  • This paper studies the effects of spatially varying ground motions on the responses of a bridge frame located on a canyon site. Compared to the spatial ground motions on a uniform flat site, which is the usual assumptions in the analysis of spatial ground motion variation effects on structures, the spatial ground motions at different locations on surface of a canyon site have different intensities owing to local site amplifications, besides the loss of coherency and phase difference. In the proposed approach, the spatial ground motions are modelled in two steps. Firstly, the base rock motions are assumed to have the same intensity and are modelled with a filtered Tajimi-Kanai power spectral density function and an empirical spatial ground motion coherency loss function. Then, power spectral density function of ground motion on surface of the canyon site is derived by considering the site amplification effect based on the one dimensional seismic wave propagation theory. Dynamic, quasi-static and total responses of the model structure to various cases of spatially varying ground motions are estimated. For comparison, responses to uniform ground motion, to spatial ground motions without considering local site effects, to spatial ground motions without considering coherency loss or phase shift are also calculated. Discussions on the ground motion spatial variation and local soil site amplification effects on structural responses are made. In particular, the effects of neglecting the site amplifications in the analysis as adopted in most studies of spatial ground motion effect on structural responses are highlighted.

The Heat Transfer Performance with Pumping Power for a Particle Bed Heat Exchanger (입자층(粒子層)을 이용한 열교환기(熱交換器)에서 소요동력(所要動力)에 따른 전열특성(傳熱特性)에 관(關)한 연구(硏究))

  • Yoo, J.O.;Yang, H.J.;Cho, Y.C.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.351-359
    • /
    • 1992
  • In order to improve the performance of heat exchanger, fluidized bed is often employed. The experiments are carried out in fluidized double pipe parallel flow heat exchanger in which finned tube is vertically immersed. And the heat transfer coefficients between the heated tube and fluidized bed of alumina beads(dp=0.41, 0.54, 0.65, 0.77mm) are calculated as a function of air fluidized velocity and pumping power. The effects of particle size, static bed height and pumping power on the heat transfer coefficients are investigated. And the heat transfer coefficients are compared with that of single phase forced convection heat exchanger. In particular, the heat transfer performance of each type heat exchanger is evaluated in relation to the pumping power.

  • PDF

Design of 4.5kV/1.5kA IGCT (4.5kV/1.5kA급 IGCT 설계 및 특성분석)

  • Kim, Hyoung-Woo;Kim, Sang-Cheol;Seo, Kil-Su;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.357-360
    • /
    • 2003
  • In this paper, we designed 4.5kV/1.5kA IGCT devices. GCT thyristor has many superior characteristics compared with GTO thyristor, for examples; snubberless turn-off capability, short storage time, high turn-on capability, small turn-off gate charge and low total power loss of the application system containing device and peripheral parts such as anode reactor and snubber capacitance. In this paper we designed GCT thyristor devices, and analyzed static and dynamic characteristics of GCT thyristor depending on the minority carrier lifetime, n-base thickness and doping concentration of n-base region, respectively. Especially, turn-on and turn-off characteristics are very important characteristics for GCT thyristor devices. So, we considered above characteristic for design and analysis of GCT devices.

  • PDF

Sensitivity-Based Method for the Effective Location of SSSC

  • Eghtedarpour, Navid;Seifi, Ali Reza
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.90-96
    • /
    • 2011
  • Congestion management is one of the most challenging aspects in the recently deregulated electricity markets. FACTS devices have been shown to be an efficient alternative to control the flow of power in lines, resulting in increased loadability, lower system loss and a reduced cost of production. In this paper, the application of a static series synchronous compensator (SSSC) for the purpose of congestion management of power systems has been studied. A sensitivity-based analysis method is utilized for effective determination of the SSSC location in an electricity market. The method is topology based and it is independent of the system operation point. A power injection p-model is developed for the SSSC in this study. Numerical results based on the modified IEEE 14 bus system with/without the SSSC demonstrate the feasibility as well as the effectiveness of the SSSC for congestion management in a network. The results obtained when using the SSSC to improve system transfer capability and congestion management is encouraging.

Stiffness Evaluation of High Temperature Superconductor Bearing Stiffness for 10 kWh Superconductor Flywheel Energy Storage System (10 kWh급 초전도 플라이휠 베어링의 강성 평가)

  • Park, B.J.;Jung, S.Y.;Lee, J.P.;Park, B.C.;Kim, C.H.;Han, S.C.;Du, S.G.;Sung, T.H.;Han, Y.H.
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.57-61
    • /
    • 2009
  • A superconductor flywheel energy storage(SFES) system is mainly act an electro-mechanical battery which transfers mechanical energy into electrical form and vice versa. SFES system consists of a pair of non-contacting High Temperature Superconductor (HTS) bearings with a very low frictional loss. But it is essential to design an efficient HTS bearing considering with rotor dynamic properties through correct calculation of stiffness in order to support a huge composite flywheel rotor with high energy storage density. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate HTS bearing magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measured axial / radial stiffness and found bearing stiffness can be easily changed by activated vibration direction between PM and HTS bulk. These results are used to determine the optimal design for a 10 kWh SFES.

  • PDF